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Abstract
Speech communication has several steps of encoding, transmis-
sion, and decoding. In each step, various acoustic distortions are
inevitably induced by non-linguistic factors such as differences
of age, gender, microphone, line, room, auditory characteristics
of a hearer’s ears, etc. In spite of this large variability, humans
can perform very precise speech processing. Recently, the first
author proposed a novel representation of speech [1, 2], which
is invariant with these factors at all. Only the dynamic motions
in speech are focused on and the static features in speech are
completely discarded. The high validity of this new representa-
tion for speech recognition was already verified experimentally
[3, 4, 5]. In this paper, we show that the new representation
of the segmental aspect of speech can be interpreted as a kind
of holistic and prosodic feature because the representation cap-
tures speech as music, i.e. timbre-based melody.

1. Introduction
Many speech sounds are produced as standing waves in a vo-
cal tube and their acoustic characteristics mainly depend on the
shape of the tube. No two speakers have the same tube in gen-
eral and speech acoustics come to have speaker variability. Dif-
ferent shapes cause different resonance, which causes different
timbre1. In the same way, different vowels are produced in a
vocal tube by changing its shape. Acoustically speaking, both
speaker difference and vowel difference are caused by the same
reason. Further, the timbre of speech can be easily changed also
by other factors such as microphone, room, line, etc.

Despite this large acoustic variability, humans can perform
accurate speech perception easily. How is this done? Even after
the long history of speech science, this still remains one of the
unanswered questions, i.e. the variability of speech acoustics
and the invariance of speech perception [6]. Speech engineer-
ing has tried to answer it by collecting a large number of sam-
ples of the individual linguistic categories, e.g. phonemes, and
modeling them statistically. For example, IBM announced that
they had collected speech samples from 350 thousand speakers
to build a speech recognizer [7]. As far as we know, however, no
child needs such an enormous number of samples to be able to
understand speech. A major part of the speech it hears are from
its mother and father. After it begins to talk, as speech chain
implies, about a half of the speech it hears is its own speech.

Developmental psychology explains that infants acquire
spoken language through imitating utterances of their parents.
Here, we can say that infants never imitate the voices of their
parents, which is a clear difference from the vocal imitation of
myna birds. They imitate many sounds of cars, doors, animals,
etc and they also imitate human voices. Hearing an adept myna

1In musicology, timbre means the spectral envelope of a sound.

Figure 1: A musical piece and its transposed version

bird say something, one can guess its keeper [8]. Hearing a very
good child say something, however, it is impossible to guess its
keeper. What in the voices is imitated by infants? Due to poor
phonological awareness, it is difficult for them to decode an in-
put utterance into a string of phonemes [9, 10, 11] and there-
fore, it is also difficult to convert the individual phonemes into
sounds. In this situation, what is imitated by infants? Devel-
opmental psychology claims that they extract the holistic sound
pattern of an input word, called word Gestalt [10, 11], and re-
produce it with their mouths. Then, what is the acoustic defini-
tion of that Gestalt? It must be speaker-invariant because infants
can extract the same Gestalt whoever speaks that word to them
using different voices. As far as we surveyed, no researcher had
yet succeeded in deriving its acoustic definition [12].

No child learns speech sounds as they are but myna birds try
to learn them as they are. We can say that every speech synthe-
sizer learns speech sounds as they are and therefore, by hearing
an output speech sample of the synthesizer, one can guess the
original speaker easily. In this sense, every speech synthesizer is
a myna bird simulator, not a human simulator. We can also say
that every speech synthesizer convert phoneme sequences into
sounds but, as noted above, no child acquires spoken language
by reading phoneme sequences into sounds. They acquire word
Gestalt, which does not convey speaker information, and try to
reproduce that Gestalt with their short vocal tubes, that is the
vocal imitation of infants. Then, we hear their sweet voices.

In the present paper, at first, we describe how we derived a
speaker-invariant representation of speech. The derivation was
carried out by considering intrinsic similarity between speech
and music. After summarizing some experimental results, we
discuss that the representation can be interpreted as a kind of
holistic and prosodic feature of speech although, only with the
new representation, spoken words are correctly identified.

2. Speaker-invariant representation
2.1. Key-invariant representation of music

Figure 1 shows a musical piece and its transposed version. The
upper melody is C-major and the other is G-major. Hearing
these musical pieces, it is usually easy to recognize the equiva-
lence between the two although they are acoustically different.
People with strong absolute pitch (AP) show some difficulty
in perceiving the equivalence [13]. When hearing these pieces,
they are automatically converted into pitch name sequences. For
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Figure 3: Three musical scales of Major, Minor, and Arabic

example, the upper melody is converted into “GEGC ACCG
GCDEDC D”. People with very strong AP have to consciously
transform this symbol sequence into the sequence of the second
melody to check the equivalence. This is considered to be a
reason why people with AP takes a longer time to perceive the
equivalence between a melody and its transposed version [13].

We can find people who cannot transcribe a melody as a se-
quence of sound symbols of pitch names or syllable names. For
them, however, it is easy to perceive the equivalence between
the two musical pieces in Figure 1. It is evident enough that
the equivalence perception does require not sound identification
but melody contour comparison. A melody contour is defined
as a sequence of local pitch movements. If ∆F0t is defined as
∆F0t=F0t−F0t−1, a sequence of ∆F0t represents the melody
contour. In Western music, an octave is divided into 12 semi-
tone intervals and a musical scale is composed of 8 tones, which
have 5 whole-tone intervals (Ws) and 2 semi-tone intervals (Ss).
It should be noted that the tones’ relative arrangement is invari-
ant with key. Figure 3 shows two well-known keys, Major and
Minor, and Arabic musical scale. If C is used as Tonic sound
(the first sound) in major key, the scale is called C-major. For
any major key, the tonal arrangement is the same, which means
that the melody contour or ∆F0t sequence is key-invariant.

2.2. Speaker-invariant representation of speech

In music, absolute acoustic properties of individual tones are
key-dependent but their melody contour is key-independent. In
speech, those of individual sounds are speaker-dependent. Is
their timbre contour speaker-independent?

Figure 2 shows a melody (pitch) contour of CDEFG and a
timbre contour of /aiueo/. Both contour patterns are visualized
in a phase space. Here, pitch is a one-dimensional feature of F0

and timbre is tentatively shown as a two-dimensional feature of
F1 and F2. Transposition of music translates the pitch contour
but the shape of the contour is not altered. The Japanese F1/F2-
based vowel chart is also shown in Figure 2. It is seen that the
male vowel system is translated to fit to the female vowel system
in which the vowel arrangement is not changed. If this vowel
system invariance is always satisfied independently of any kind
of the non-linguistic factors, then, the timbre contour can be
considered as the acoustic definition of word Gestalt. As ex-
plained shortly, however, this simple derivation does not pro-
vide a good answer to “what is the acoustic definition?”

Figure 4: Rotation of two cepstrum vectors and their ∆ vector

Using cepstrum c, local timbre movements are represented
as ∆cepstrum, which is derived by the following equation,

∆ct =

PT
τ=1 τ(ct+τ − ct−τ )

2
PT

τ=1 τ2
.

If we use 1 as T , the shortest window length of 2, ∆ct is cal-
culated as 1

2
(ct+1−ct−1). Although both ∆F0 and ∆c are the

velocity components of observations, a sequence of ∆F0 is key-
independent but that of ∆c is strongly speaker-dependent.

2.3. Directional dependence of cepstrum on speakers

Difference of the vocal tract length changes formant frequen-
cies. If it becomes shorter or longer, they will become higher or
lower, respectively. This change is often modeled as frequency
warping of a spectrum envelope in the spectral domain and as
multiplication of matrix A on c in the cepstral domain [14].
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Using c′=Ac, it is possible to convert a speech sample of a male
adult into that of a boy. The element aij is described as
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We carried out a geometrical analysis of this matrix and found
that A has a very strong function of rotating cepstrum vectors
although A is not completely a rotation matrix [15]. This rota-
tion is dependent on vocal tract length difference and reasonably
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Figure 6: Rotation of cepstrum vectors and their ∆s
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Figure 7: Distribution-based structuralization

independent of speakers and phonemes. As shown in Figure 4,
if two consecutive cepstrum vectors are rotated similarly, then,
their ∆ vector is also rotated in the same way.

Figure 5 shows two speech samples of /aiueo/; an original
one (male adult) and its warped version (boy) using A. The
formant frequencies are clearly shifted higher. Figure 6 shows
some results of analyzing the relation between rotation angles
and the degree of body height change through warping. As in
Figure 5, an /aiuoe/ utterance of a male adult was warped into
that of speakers of different heights. The original height was
167 cm and the height was changed into 50 cm to 350 cm. From
these utterances, four fixed points were detected, i.e. the central
positions of transition of /a/ to /i/, /i/ to /u/, /u/ to /e/, and /e/ to
/o/. In Figure 5, the position of /a/ to /i/ transition is shown. We
can say from Figure 6 that the rotation of cepstrum vectors and
that of their ∆s are very similar and that the rotation is vowel-
independent. Similar analysis was done with ∆2cepstrum and
other male and female speakers. Then, it was shown that the
rotation of ∆2 was also very similar and that the rotation was
very gender- or speaker-independent. These results claim that a
sequence of ∆c is very size- or age-dependent within a speaker.

2.4. Robust and structural invariance in speech

If matrix A is completely a rotation matrix, speaker-invariant
features can be obtained as follows. A speech stream is con-
verted into a sequence of N cepstrum vectors. If every distance
is calculated between any pair of the N cepstrums, which pro-
vides an N×N distance matrix, the matrix is invariant. In the
cepstral domain, difference of microphones or lines is repre-
sented as addition of another static vector b, c′=c+b. And it
is very clear that the matrix is also invariant with any kind of
b. It seems that the distance matrix can be a good candidate to
the acoustic definition of word Gestalt but we have to note that
matrix A is not completely a rotation matrix. So, the distance
matrix is easily modified by difference of speakers.

Is there a good method to make the distance matrix invari-
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Figure 8: Linear and non-linear transform between two spaces

ant? The answer is to calculate the matrix as distribution-based
matrix. Figure 7 shows a timbre contour in a cepstrum space. In
the figure, it is converted into a sequence of distributions, from
which a distance matrix is extracted. It should be noted that dis-
tance is calculated also from temporally distant events. We can
guarantee mathematically that this distance matrix is invariant
with any kind of linear or non-linear transform function [16].

In Figure 8, there are two spaces, one of which is mapped
into the other by a linear or non-linear transform. Point (x, y)
in space A is mapped uniquely on (u, v) in space B, where
x=f(u, v) and y=g(u, v). Using f and g, any integral opera-
tion in space A can be rewritten as its counterpart in B.
ZZ

φ(x, y)dxdy =

ZZ

φ(f(u, v), g(u, v))|J(u, v)|dudv

=

ZZ

ψ(u, v)dudv,

where J(u, v) is Jacobian. Then, acoustic event pi in A, which
is characterized as distribution, is mapped onto qi in space B.

qi(u, v) = pi(f(u, v), g(u, v))|J(u, v)|,

We can show that Bhattacharyya distance between two distribu-
tions is invariant with any kind of linear or non-linear transform.

BD(p1, p2) = − log

Z

⃝
Z

p

p1(x, y)p2(x, y)dxdy

= − log

Z

⃝
Z

p

p1(f(u, v), g(u, v))|J | · p2(f(u, v), g(u, v))|J |dudv

= − log

Z

⃝
Z

p

q1(u, v)q2(u, v)dudv = BD(q1, q2)

The distribution-based distance matrix is invariant robustly. The
shape of a triangle is determined uniquely if the length of all the
segments is given. Similarly, the shape of an n point geometri-
cal structure is determined uniquely if the length of all the nC2

segments, including the diagonal ones, is given. This is why we
call matrix-based representation as structural representation.

The mathematically same framework is used in quantum
chemistry. Structural analysis of molecules is carried out using
distribution-based distance matrices. Here, a distribution means
an electron cloud but “− log” operation is not done to calcu-
late distance between two clouds.

H

p

p1(x)p2(x)dx is called
overlap integral and the matrix is called overlap matrix, both
of which are very fundamental measures of quantum chemistry.
Many of chemical functions of matter are determined based on
the structural and morphological features of its molecule.

2.5. Some experimental results

An utterance is converted into a distance matrix (a structure) and
another utterance is done into another matrix, both of which are
invariant with any kind of static non-linguistic factors. We al-
ready proposed a distance measure between two matrices [17]
and, using it, structural speech recognition was examined ex-
perimentally [3, 4, 5], where static and absolute speech features



Table 1: Recognition rates of HMMs and the structural models
HMM Proposed

#speakers 4,130 8
word-based 97.4 98.3
vowel-based 98.8 99.3
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Figure 9: Two accented pronunciations of American English
[19] and Jakobson’s geometrical structure of the vowels [20]

were completely discarded. The task was isolated word recog-
nition, where word was defined artificially as vowel sequence of
V1V2V3V4V5 (Vi ̸=Vj) like /aeiou/. Since Japanese has only
5 vowels, the vocabulary size is 120. Since speaker differences
are removed well, the matrix-based acoustic models were built
by using only 4 male and 4 female speakers for training. Test
utterances of V1V2V3V4V5 were given by other 4 male and 4
female speakers. The total number of test utterances was 4,800.

The performances are shown in Table 1. For comparison,
an isolated word recognizer was built using tied-state triphone
HMMs, trained by 4,130 speakers using MFCC and its ∆ [18].
The proposed framework showed almost the same performance.
Strictly speaking, however, we have to note that the direct com-
parison is not fair because the proposed method was examined
in a task-closed experiment and the HMMs were done in a task-
open one. But we can say that the holistic and structural rep-
resentation, which does not have any static and absolute speech
features, has a very good function of identifying spoken words.
Detailed descriptions on the experiments are found in [3, 4, 5].

3. Discussions and conclusions
In Figure 3, Arabic scale is shown. If a western music is per-
formed with this scale, it will take on a very different color. This
means that the sound arrangement pattern can easily change the
color of music. This is the case with vowels. If the vowel ar-
rangement pattern is changed, it will indicate a regionally ac-
cented pronunciation. Figure 9 shows two examples of the ac-
cented pronunciation of American English. The vowel arrange-
ment pattern can easily change the color of pronunciation.

Suppose that the parents of identical twins get divorced im-
mediately after birth. A twin is taken in by the mother and the
other is by the father. What kind of pronunciation do they ac-
quire ten years later? Do the twins produce mother-sounding
and father-sounding voices? No way! They are not myna birds!
But there is an exceptional case that the twins’ pronunciations
are very different. The case is that the parents are speakers of
different regional accents. Timbre difference based on speakers
does not affect the pronunciation but that based on regional ac-
cents affects it. Why? The simplest explanation is that infants
don’t learn the sounds as they are but infants learn the sound
system embedded in spoken language. The proposed structural
representation extracts the embedded invariant system in an ut-
terance and we consider that this is the answer to the question.

Phonetics discusses the absolute values of language sounds.
Phonology does their relative values and often focuses on con-

trasts in speech. Figure 9 shows Jakobson’s structure of the
French vowels. He was inspired by Saussure’s claim that lan-
guage is a system of conceptual differences and phonic differ-
ences. We consider that the proposed structural representation
is a physical implementation of structural phonology and, in the
representation, distant contrasts as well as local ones are con-
sidered. In a sense, we can say that phonetics looks at speech
atoms and phonology looks at speech molecules.

The new representation was obtained by making a timbre
contour of Figure 2 invariant. The pitch contour as in Figure 2
is one of the prosodic features. We consider that the proposed
holistic and structural representation based on the timbre con-
tour is yet another prosodic feature. This is because the repre-
sentation is very supra-segmental and cannot identify any iso-
lated sound or segment although it can identify a word.

In studies of speech recognition and speech perception [21],
speech features are often divided into two kinds, static and dy-
namic. In this study, another criterion is given, which divides
the features into local (atomic) and holistic (molecular or mor-
phological). This division surely corresponds to phonetics and
phonology and, as discussed in Section 2, we consider that this
division is more valid linguistically and psychologically. The
effective integration of both features is left as future work.
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