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Abstract
We propose that, in Mandarin speech, an automatic prosodic
break detector can be trained without any prosodically labeled
training data. We use only lexical and acoustic cues to create
a small labeled training set, then use semi-supervised learning
to train a prosodic break detector. A generative mixture model
is proposed as the learning algorithm that can learn with both
labeled and unlabeled data. The experiments in both English
and Mandarin corpus verify our algorithm.

1. Introduction
Prosodic breaks are boundaries which mark the perceived de-
gree of separation between a pair of lexical items in human
speech. A prosodic break detector is actually a classifier which
receives acoustic correlates and classifies the event as non-break
or break. Traditionally automatic prosodic labeling is based on
supervised training methodology, in which data marked with
prosodic events are required to train a classifier [1, 2]. All of
them are supervised classification tasks that try to map acoustic
or/and lexical cues to the prosodic event defined in TOBI [3] or
any other system of prosodic annotation, given a well-labeled
database such as [4].

The goal of this research is to automatically locate prosodic
breaks in Mandarin speech without any prosodically labeled
data. The advantage of our proposal is the prosodic structure
can be detected for any Mandarin corpus regardless of the ex-
istence of prosodic labels. Furthermore, the prosodic structure
detected is totally driven by the distribution of acoustic features.
This provides an interesting view of how non-expert people per-
ceive prosody without the labeling instruction, and how this
natural prosodic structure interacts with acoustic and phonetic
structure, as we human seem to process prosody information
without a guideline being taught, too. This work can also aid
future research in speech recognition and understanding.

There is little research about learning prosodic events unsu-
pervisedly. Levow [5] employed both unsupervised and semi-
supervised (with the aid of a small set of labeled data) in En-
glish pitch and Chinese tone recognition, using only acoustic
features. Ananthakrishnan et al. [6] used clustering algorithm
to partition the acoustic space into two contrastive classes and
used lexical and syntactic to further refine the classification. In
their approach, some reliable representatives of each cluster are
identified by assuming the acoustic confusion associated with
reliable samples is small, and use these representatives to train a
classifier. We use the similar two-step strategy in this work, but
there are two main differences between our work and [6]. First,
we identify some representatives by not only acoustic but also
lexical cues, and the reliability of those representatives is jus-
tified by the true characteristic in Mandarin speech rather than
the plausible assumption about the acoustic confusion. Second,

We train a classifier from both the identified labeled set and a
large pool of unlabeled set, expecting the data structure embed-
ded in the unlabeled set can further provide more information.
Learning with both labeled and unlabeled data is called semi-
supervised learning, and people have found the possibilities of
the aid of unlabeled data in learning problems.

2. Proposed Method
2.1. Creating the labeled set

Based on the experimental study in the literature [7, 8], we
adopt one key characteristic of fluent Chinese utterances: there
is no prosodic break at a syllable boundary within a short lexical
word. Here we define “short” as containing less than three syl-
lables. By collecting these “intra-short-word” syllable bound-
aries, we have the set of data examples from the non-break
class. The task now is find the break class among the rest of
“inter-word” and “intra-long-word” syllable boundaries, given
the non-break set that we have collected. Formally, we have a
labeled set Xl and an unlabeled set Xu:
Dataset I
Xl all “intra-short-word” syllable boundaries, with the corre-

sponding class labels yi = nb.
Xu all “inter-word” and “intra-long-word” syllable boundaries,

where class labels yi ∈ {nb, b} are missing.
Unambiguous examples of the break class are also avail-

able, but only in certain speaking styles. In speech with few
disfluencies (e.g., radio announcer speech), almost every silent
pause is a prosodic phrase boundary. In speech of this style, we
can say that a silent pause is a sufficient condition for the pres-
ence of a prosodic break at the corresponding syllable bound-
ary. If we apply this rule beforehand, then a certain amount of
break data can be obtained. Together with the non-break data
extracted from the intra-short-word boundaries, the labeled set
now have data from both classes, while we still have an unla-
beled set which comprises inter-word syllable boundaries with-
out silent pause. Different from Dataset I, the labeled set now
have two subsets from each class:
Dataset II
Xl,nb all “intra-short-word” syllable boundaries, with the cor-

responding labels yi = nb.
Xl,b all syllable boundaries that have silent pauses, with the

corresponding labels yi = b.
Xu The rest of “inter-word” and “intra-long-word” syllable

boundaries, where class labels yi ∈ {nb, b} are missing.

2.2. Learning with both labeled and unlabeled data

The generative mixture model is proposed here to model both
non-break and break data in the feature space, and it applies



to both Dataset I and II proposed in section 2.1. The model
has M mixture components, M1, . . . ,MM , that can gener-
ate data (x, c, L) where x ∈ Rn is prosodic feature contain-
ing n acoustic correlates, c ∈ {nb, b} is the class label, and
L ∈ {“l′′, “m′′}] indicates label is observed (“l”) or missing
(“m”). The joint probability of (x, c, L) is a weighted sum over
all mixtures:

P (x, c, L) =

M∑
j=1

αjf(x|θj)P (C = c|Mj)P (L|C = c) (1)

where αj is the weight of mixtureMj , f(x|θj) describes the
probability of the feature x in mixtureMj , (Here we use Gaus-
sian distribution.) P (C = c|Mj) is the class probability in
mixture Mj , and P (L|C = c) is the class-dependent label
present/absent probability.

Therefore, the parameter set that we need to estimate now is
Θ = {{αk} , {θk} , {P (C = c|Mj)} , {P (L = v|C = c)}},
and we use Expectation-Maximization to find the optimal pa-
rameter that can maximize the data loglikelihood. It is a itera-
tive algorithm where each iteration has two steps:

E-step estimate the expectation of complete-data log-
likelihood with respect to the missing values

Q(Θ,Θi−1) = EXm

[
log p (X ,Xm|Θ) |X ,Θi−1

]
(2)

M-step update the parameter with the value which can maxi-
mize the auxiliary function in E-step:

Θ̂ = arg max
Θ

Q(Θ,Θi−1) (3)

The closed form EM updating formulas are put in Appendix.
Once the model parameters are learned after EM iterations

are done, the classification of a test (new) feature x is by choos-
ing the class label that maximizes the posterior probability:

Ĉ = arg max
c∈{nb,b}

P (c|x), (4)

where the posterior probabilities can be obtained as

P (C = c|x) =

∑M
l=1 αlp(x|θl)p(C = c|Ml)∑M

l=1 αlp(x|θl)
. (5)

Also, the overall class distribution can be estimated as

P (C = c) =

M∑
l=1

αlp(C = c|Ml) (6)

3. Experimental Results
3.1. Pilot Study with English Corpus

In addition to Mandarin, we use English prosody corpus as a
pilot study of our algorithms. We use a subset of the Boston Ra-
dio News Corpus [4], read by female speaker F2B, comprising
34 stories, 49 minutes of news material. The corpus includes
orthographic transcription and automatically generated phone
alignments. The prosodic structure is annotated with the per-
ceptual labeling system developed by Price et al. in [9]. Under
this system, the degree of perceived disjuncture between each
pair of words is expressed by a break index between 0 and 6,
assigned by human labeler. The description for each break level
are listed in Table 1. Because our classifier deals with non-break

versus break, we merge 0 and 1 into the non-break set, and 2 to
6 into the break set. The acoustic features includes pitch, du-
ration, energy related features, totally 99 variables. The feature
dimension is reduced to two by Principal Component Analysis
(PCA). We separate the last six stories out as the testing set. We

Table 1: Description for break indices by Price et al. [9].

Break Index Description
0 between two orthographic words between

which there is obvious phonetic reduction
1 a default to unmarked word boundaries
2 a perceived grouping of words that

is not intonationally marked
3 intermediate phrase boundaries
4 intonational phrase boundaries
5 perceived groupings of intonational phrases

within a (typically long) sentence
6 sentence boundaries

use the English prosody data as the toy data to test the perfor-
mance of the generative mixture model when the labeled set has
only one class of samples (Dataset I) or both classes (Dataset
II). To simulate Dataset I, we take a fraction R = 0.5 of non-
breaks as a labeled set Xl and combine the rest of non-breaks
with all breaks to form the unlabeled set Xu. As for Labeled set
II, in addition to a non-break labeled set Xl,nb is collected as
in Dataset I, we take some break data to form Xl,b, and the rest
become Xu.

For Dataset I, the generative model gives the overall non-
break versus break classification accuracy 53.26%, which is
near the chance rate 51.79%, but it is rather lower than the su-
pervised result (70.77%) where the labels are given for training.
The correct classification rates for each break level are listed in
Table 2. As we can see from the table, the recognition of breaks
is increasing as the perception strength of break is larger, and
the sentence boundaries are recognized best among them. The
indistinguishableness of break index 2 and 3 hurt the overall ac-
curacy. In addition, the class distribution estimated using (14)
is 0.5973 : 0.4027, while the true sample class distribution is
0.562 : 0.438.

For Dataset II, we test with both balanced and imbalanced
cases. Balanced case is where the class distribution in the la-
beled set equals the unlabeled set; Imbalanced case is not. The
recognition accuracy for balanced case is 70.96% and imbal-
anced is 70.50%, which shows our mixture model is robust to
the varied data distribution across labeled and unlabeled set.
This is attributed to the label missing probabilities introduced
in our generative model (1). Either the overall acuracy or the
respective classification rates for each break level, the model
learned from Dataset II has better performance than Dataset I.
It is predictable because the labeled set now has data from the
other class, providing more guidance of the class information.

3.2. Mandarin corpus

The Mandarin database is the corpus used for duration study for
Text-to-Speech in Bell Laboratories [10]. This corpus contains
427 sentences from news material, recorded by a male Man-
darin speaker from Beijing. The prosodic annotation includes
prosodic word boundaries, minor breaks and major breaks, and
we only focus on minor and major breaks here. For each syl-
labic boundary, a total of 25 acoustic features includes pitch,
duration, and energy related features are extracted. Instead



Table 2: English experiment for Dataset I (DSI) and Dataset II (DSII): the respective recognition accuracies (%) for each break level.

non-break break total
Break index B0 B1 B2 B3 B4 B5 B6

DSI 66.67 80.55 17.98 16.78 20.59 48.65 74.42 53.26
DSII 88.87 85.56 30.7 51 71.18 100 97.67 70.96

Table 3: The nonbreak/break classification accuracies (%) of the mixture model, using Dataset I (DSI) and Dataset II (DSII) in the
Mandarin testing set.

nonbreak break minor break major break total
w/o sp w/ sp w/ sp

DSI 70.32 (52.24) 83.03 86.67 87.19 73.25 (65.57)
DSII 83.98 (71.27) 66.07 76.87 90.8 81.93 (72.68)

of PCA, we use minimum Redundancy Maximum Relevance
(mRMR) feature selection module [11] to select the top four
variables as the input features. 52 sentences are separated out
as the testing set.

Dataset I and II are built as described in section 2.1. Unlike
English experiment, here we design a two-pass classification.
Because major breaks and part of minor breaks are strongly
correlated to silent pauses in this corpus, we treat the silent
pause as a special feature and separate it from the feature set
in the first pass. In the first pass, our algorithms detect breaks
with all features excluding silent pause; in the second pass, we
classify all data points with silent pauses into the break class.
The reason of the two-pass classification is to investigate how
semi-supervised learning will learn the prosodic structure with
acoustic cues other than silent pause.

For Dataset I, the overall classification accuracy after the
two-pass classifier is 75.76%, whereas the same two-pass clas-
sifier but with a supervised classification where prosodic labels
are given for training, in the first pass, will give 88.62%. Be-
cause the generative model is applied to the first pass, we are
also interested in the classification result in the first pass, and
the accuracy for each break level in the first pass is listed in Ta-
ble 3. Breaks are redivided into three categories–minor breaks
without silent pauses, minor breaks with silent pauses, and ma-
jor breaks with silent pauses. The algorithm recognizes those
breaks quite well even without given the silent pause cue. The
estimated class distribution is 0.51 : 0.49 as the real distribution
is 0.7869 : 0.2131.

For Dataset II, the overall accuracy (85.50%) is higher than
Dataset I case, and comparable to the supervisd result, 88.62%.
The accuracy for each break level in the first pass is also listed
in Table 3. More percentages of nonbreaks are detected than
Dataset I, and the classification rates varies across different type
of breaks unlike Dataset I in which the rates are very similar.
The estimated class distribution is 0.6411 : 0.3589, which is
closer to the real one than Dataset I.

4. Discussion
For Dataset I, Mandarin case seems to have much higher recog-
nition of breaks than English. One interpretation is that Man-
darin break and non-break may have simpler data structure to
capture. Both English and Mandarin prosody data show that
Dataset II improves over Dataset I in overall recognition ac-
curacy. When we look in detail at Table 3, there are actually
some differences in how different types of breaks are classified.
In English data, the addition of some breaks in the labeled set,

i.e., Dataset II, improves the classification rates for all levels of
breaks and nonbreak. In Mandarin data, only the nonbreak and
major break with silent pause are improved where as the other
kinds are degrading. The possible reason is that in Mandarin we
use the breaks with silent pauses as the seeds for break class to
run EM, resulting in a high recognition rate for the same type of
break and also nonbreak. Nevertheless, from both experiments
we can clearly see that having a labeled set from both classes
can learn a better model than just from one of the classes.

Mandarin is a tonal language; every syllable has a tone sig-
naled by different pitch contour shapes. In this paper we haven’t
considered the influence of tone into the prosodic break detec-
tor. However, the detector still works because the most relevant
prosodic features selected automatically by mRMR algorithm
are not about the shape of the pitch contour, which are the most
relevant features to tone differentiation.

It is hard to compare English and Mandarin results fairly;
English prosody data are used to detect break among word
boundaries while Mandarin prosody data are used to detect
break among syllable boundaries. To provide a fairer compari-
son, we also calculate the recognition accuracy concerning only
word boundaries. That is, the denominator of accuracy does
not include “intra-word” syllable boundaries. The resulting dif-
ferent numbers are parenthesized in Table 3. The accuracy is
worse, which implies that the nonbreaks that occur between two
words (inter-word) are worse recognized than those within a
word (intra-word).

Different measures of the classification results will provide
different information. The rate of total accuracy does not pro-
vide enough information for us to understand what the algo-
rithm has learned, and that is why we also look into the classifi-
cation rate for each type of breaks for more details. It is possible
that other evaluation metrics might also help to analyze clas-
sifier performance, such as F-measure or break insertion and
deletion rate.

5. Conclusion
We propose that in Mandarin speech prosodic breaks can be lo-
cated without any prosodically labeled data. The first method
(Dataset I) makes use of non-break data which are obtained
from “intra-short-word” syllable boundaries, and learns its con-
trastive class with a generative mixture model. The second
method (Dataset II) augments the non-break set with some
break data that can be determined by silent pauses, and learns
the mixture model given this set together with other unlabeled
data. The generative mixture model is proposed to consider the



existence of both labeled and unlabeled data, and the prosodic
break detector is based on the MAP rule using the generative
model. When provided with only some labeled nonbreak data
(Dataset I), the detector is able to discover the breaks from un-
labeled data. In the experiments, Mandarin data has higher rate
of discovering breaks than English. When provided with also
some labeled break data (Dataset II), in both corpora it achieves
a comparable recognition accuracy to the supervised case where
all prosodic labels are given for training.

Since our approach learns classes only depending on the
distribution of data in the corpora, it can be applied any cor-
pus and automatically fit to the speaker-dependent or corpus-
dependent spoken style, e.g. broadcast news, read speech, or
telephone speech.
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A. EM updating formulas
The E-step computes the following two equations

p(l|x ∈Xl,c,Θ
g) =

αg
l p(x|θ

g
l )P g(C = c|Ml)P

g(L = ”l”|C = c)∑M
k=1 α

g
kp(x|θ

g
k)P g(C = c|Mk)P g(L = ”l”|C = c)

(7)

and
∑M

l=1 p(l|x ∈ XL,c,Θ
g) = 1, ∀c ∈ {nb, b};

p(l, C =c|x ∈ Xu,Θ
g) =

αg
l p(x|θ

g
l )P g(C = c|Ml)P

g(L = ”m”|C = c)∑M
k=1 α

g
kp(x|θ

g
k)P g(C = c|Mk)P g(L = ”m”|C = c)

(8)

and
∑M

l=1

∑
c∈{nb,b} p(l, C = c|x ∈ XU ,Θ

g) = 1.
For The M-step, we update the parameters by the following

equations:

αl =
1

L+ U
wl, (9)

where L is the size of the labeled set, U is the size of the unla-
beled set, and

wl =
∑

c

∑
x∈Xl,c

p(l|x ∈ Xl,c,Θ
g) +

∑
x∈Xu

∑
c

p(l, C = c|x,Θg).

(10)

The parameters of f(x|θl) are mean µl and covariance Σl:

µl =
1

wl
(
∑

c

∑
x∈Xl,c

x · p(l|x ∈ Xl,c,Θ
g)

+
∑

x∈Xu

∑
c

x · p(l, C = c|x,Θg))

(11)

Σl =
1

wl
(
∑

c

∑
x∈Xl,c

p(l|x ∈ XL,c,Θ
g)(x− µl)(x− µl)

T

+
∑

x∈Xu

∑
c

p(l, C = c|x,Θg)(x− µl)(x− µl)
T ).

(12)

Also, P (C|Ml) and P (L = ”m”|C) are updated in the follow-
ing way:

P (C = c|Ml) =
1

wl
(

∑
x∈XL,c

P (l|x ∈ Xl,c)

+
∑

x∈Xu

P (l, C = c|x ∈ XU )).
(13)

P (L = ”m”|C = c) =
Uc

Lc + Uc
, (14)

For Dataset I, the class labels for the break class are always
missing, which means the labeling missing probabilities for the
break class, P (L = ”m”|C = b), equals 1. Therefore, the EM
update formulas are the same as,(7) to (8), (9) to (14), except
that Xl,nb = Xl and Xl,b = φ.


