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Abstract
This study continues our previous investigation into the rhythms
contributing to the temporal structure of speech. The relative
significance of different hierarchical levels of rhythm was eval-
uated using Bayesian inference on a linear regression model
based on coupled oscillators. Results strengthen our previous
conclusions that stress, mora and possibly foot timing are all
simultaneously present as rhythmic factors in Finnish conversa-
tional speech.

1. Introduction
Languages have been classified as stress timed or syllable
timed; more recently other types of timing have been proposed,
such as mora timing [14] and foot timing [18]. Rather than
assuming a strict classification, we view speech rhythm as re-
sulting from synchronization of these or other hierarchical lev-
els of cyclical behavior. We consider the possible relevance of
these rhythmic components in conversational speech, using re-
sults from coupled oscillator theory to evaluate their influence
on timing.

It has been suggested for example that Finnish may exhibit
signs of foot timing [18] or mora timing [1]. In our previous
research [11], we found evidence that at least for one speaker,
Finnish conversational speech appears to have a strong compo-
nent of rhythm at about the level of phrasal stress in addition to
mora timing, along with a weaker third component which could
be labeled a foot rhythm.

In the present study, we examine an additional speaker from
the same data base, covering almost twice as much total speech
time as before. We also extend our statistical model in two
ways: an additional category of syllable boundary is included
to allow for different probabilities of phrasal stress realization,
and a parameter is also added to take into consideration alterna-
tive definitions of the mora.

2. Theoretical background
In recent years several researchers have utilized the mathemat-
ical apparatus of coupled oscillators to model speech rhythm
[2, 4, 12, 16]. One result of a general model of hierarchically
coupled oscillators is that the period of the slowest rhythm tends
toward a value which can be expressed as a linear function of
the number of lower level units it includes [13]. In order to eval-
uate the effect that hypothetical rhythmic levels have on timing
we utilize a linear regression model for pause group duration
(T1) with five (possible) levels:

T1 = c1 + c2n2 + c3n3 + c4n4 + c5n5 (1)

1. Pause group (stretch of speech between physical pauses;
coefficient c1)

2. Number of stress groups in each pause group n2 (deter-
mined stochastically subject to the restriction that each
pause group contains at least one and that a stress group
boundary does not fall within a word; coefficient c2)

3. Number of feet in each pause group n3 (determined
stochastically subject to the restriction that every stress
group boundary is also a foot boundary, that every lexi-
cal stem begins a new foot and that a foot boundary does
not fall within a syllable; coefficient c3)

4. Number of syllables in each pause group n4 (coeffi-
cient c4)

5. Number of morae in each pause group n5 (coefficient c5)

3. Corpus of conversational Finnish speech
Informal unscripted dialogues were recorded from young
Finnish adults in an anechoic room. The participants in each di-
alogue were close friends and they were allowed to chat freely
and unmonitored for a total of 40 to 60 minutes on either given
or self-selected topics. The speakers were sitting a few me-
ters apart and facing opposite directions. Each speaker’s speech
was recorded to a separate channel of a DAT recorder using
high-quality headset microphones. The recorded material was
then transferred to a computer and sampled at 22050 Hz. The
two channels of the stereo files were separated, resulting in one
audio file per speaker. Each speaker’s utterances were delin-
eated and orthographically transcribed using the Praat program
[3]. Parts of the material were phonetically segmented and tran-
scribed, and pause (including short hesitations), word, syllable
and mora boundaries were marked. Previously we analyzed
1200 seconds of speech from one female speaker (age 24 years)
[11]. For the present study, we analyzed 2360 seconds of con-
versational speech from a second female Finnish speaker (age
21 years). As before, unclear cases, e.g. hesitation noises, were
excluded from analysis.

4. Statistical treatment
We used the WinBUGS program [17] to perform Bayesian in-
ference using the regression model described above. The di-
rected acyclical graph (DAG) in Fig. 1 shows the structure of
the total statistical model employed. Arrows with broken lines
indicate logical (deterministic) links and those with solid lines
indicate stochastic links.

The measured duration of pause group i is represented in
this figure by Zi. As in equation (1), nik is the number of level
k cycles in pause group i and ck is the coefficient for level k.
Together with µi (expected duration) and σ2

ε (error variance)
these form the main regression model. Error variance does not
appear to increase with duration in our data, so we assume a
normal distribution of the Zi with mean µi.



Figure 1: Directed acyclical graph (DAG) of stochastic model.
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In our previous work [11] the ck were given a noninforma-
tive half-normal prior. Because of the nature of the oscillator
model, estimates for the ck are expected to be highly (nega-
tively) correlated, causing slow convergence and mixing in the
WinBUGS simulation. This problem became even more acute
in the present case with an increased number of cases. The
problem was alleviated by adding redundant parameters to the
model. We take advantage of the relation

P
ckωk = 1 hold-

ing in the coupled oscillator model, where ωk is the natural
frequency of the k-level oscillator. Defining auxiliary weight
parameters πk = ckωk which sum to unity, the original coef-
ficients can be calculated as ck = πk/ωk. Although the pa-
rameters πk and ωk would be nonidentifiable in a classical re-
gression analysis, they can be used with informative priors and
additional constraints in the Bayesian setting. We give the πk
a joint Dirichlet prior (with all parameters equal to 1) to ensure
they sum to unity. The ωk are given a reasonable lognormal
prior with the added restriction that a higher level oscillator is
assumed to be intrinsically slower, ie. ωk < ωk′ for k < k′.

An added advantage of this reparameterization is that πk
can be interpreted as the importance of level k in the coupled
oscillator model. To see this, we express equation (1) as

T1 = π1
1

ω1
+ π2

n2

ω2
+ π3

n3

ω3
+ π4

n4

ω4
+ π5

n5

ω5
(2)

and note that nk/ωk is the duration we would get if the level
k oscillator were the only one in the model. Thus equation (2)
expresses T1 as a weighted average of durations. Unlike the
raw coefficients ck, the weights πk are expressed on the same
dimensionless scale independent of the natural period 1/ωk of
the corresponding oscillator. Equation (2) also shows a connec-
tion with (nonhierarchical) intrasyllabic gesture coupling cur-
rently being investigated in the task dynamic literature [9]. In
both cases the resulting composite oscillator has a period which
can be expressed as the weighted average of the periods of its
components.

The indicator variable γk = 0, 1 in Fig. 1 serves to exclude
or include level k in the regression with prior probability 0.5 (so
called Gibbs Variable Selection, GVS, cf. [10]).

Since some of the nik are not known exactly (specifically
number of stress groups ni,2 and number of feet ni,3), a prior
distribution must be set up for them as well. This is the purpose
of bij and pj in Fig. 1. For each syllable boundary type j, bij
gives the number of such boundaries in pause group i. The vec-

tor pj expresses the prior probabilities for all possible bound-
ary realizations given boundary type j. These probabilities are
given a noninformative hyperprior distribution (Dirichlet with
all parameters equal to one).

Figure 2: Four types of syllable boundary, illustrated with the
phrase Oliks niil sit pitkä välimatka? ‘Then did they have a long
distance between them?’ (sg = stress group).

sg ? ? ? ? ?

foot ? ? ? ? ?

syllable o liks niil sit pit kä vä li mat ka
a b1 b2 c

morae 1 2 2 2 2 1 1 1 2 1
or 1 3 3 2 2 1 1 1 2 1

Given the restrictions outlined above in Section 2, a mini-
mum of three boundary types must be distinguished (see Fig. 2
for an example pause group from our data):

Type a (before a function word) could be a stress group bound-
ary and a foot boundary or only a foot boundary or nei-
ther.

Type b (before a lexical word) is at least a foot boundary, but
could also be a stress group boundary.

Type c (word internal) cannot be a stress group boundary but
might be a foot boundary.

In our previous investigation we restricted the number of
prior boundary types to these three. In the present analysis the
second group (type b) was further divided into two types:

Type b1 the boundary is not inside a compound word (ie. cor-
responds to a space in written Finnish)

Type b2 the boundary is inside a compound word (no space in
written Finnish)

This division was motivated by the widespread consensus
among Finnish scholars that the orthographic rules for writing
Finnish words together without an intervening space are justi-
fied by the facts of Finnish stress. In that case we would not
expect boundary type b2 to begin a stress group, or at least less
often than type b1.

Another difference in the present analysis concerns the
method of counting morae. Traditional accounts of the mora in
Finnish assume that each additional segment in a syllable after
a possible initial consonant adds one mora to the total making
it possible to have one, two, three or four mora syllables. An
alternative traditional description divides Finnish syllables into
light syllables (ending in a short vowel) and heavy syllables (all
other types), which corresponds to the restriction of syllables to
monomoraic or bimoraic type. To illustrate, in the case of the
pause group illustrated in Fig. 2, we get a total mora count of
either n5 = 17 or n5 = 15. With this distinction in mind, we
wanted to allow the stochastic model to choose between these
two ways of counting morae (“bimoraic” vs. “multimoraic” hy-
pothesis). We first included a categorical choice in the model
with a prior probability of 0.5, but this lead to very poor mixing
of the simulation. An alternative approach was therefore taken
to allow assessment of the importance (in durational terms) of
the “extra segments/morae” in a syllable (ie. those after the first



two morae). These extra segments were counted separately and
given a coefficient of their own in the regression model (cM in
Fig. 1), with a noninformative normal prior. This arrangement
allowed us to test the two hypotheses statistically: in the bi-
moraic case we expect cM ≈ 0 while in the multimoraic case
we expect cM ≈ c5.

5. Results and discussion
Both mora and stress group counts had a very significant effect
on pause group duration. Table 1 shows the significance of each
level considered. It is quite unlikely that there is any effect at the
top (pause group) level, or at the syllable level. The foot level
on the other hand showed a likely effect, although it did not
reach the significance of the stress group and mora levels. All
these results replicate our earlier results for a different speaker.

Table 1: Significance of terms in the regression model (posterior
marginal probability that the term is not in model).

rhythmic level term Pr(γk = 0)
pause group c1 0.98654
stress group c2n2 < 0.00001

foot c3n3 0.24100
syllable c4n4 0.87360

mora c5n5 < 0.00001

Table 2 shows the posterior probabilities of the most prob-
able combinations of terms included in the regression model.
Mora and stress group terms are included in all models. The
most likely model of all (p = 0.6778) is the one including
stress group, foot and mora (model 1 in Table 2). This is the
same model which was most likely in our earlier study.

Table 2: Posterior probabilities of the most likely models (only
those models for which p > 0.01 are shown).

model p
1 c2n2 + c3n3 + c5n5 0.6778
2 c2n2 + c5n5 0.1846
3 c2n2 + c3n3 + c4n4 + c5n5 0.07002
4 c2n2 + c4n4 + c5n5 0.05406

We now turn to the bimoraic and multimoraic hypothe-
ses. The posterior probability that cM > 0 is p = 0.7512.
While this is greater than 50%, the 95% credible interval (CI) is
(−14.03, 27.63), which includes zero, so the bimoraic hypoth-
esis cannot be rejected at this level of confidence. On the other
hand the posterior probability that cM < c5 is p = 0.98913
so we can reject the multimoraic hypothesis at more than a 95%
confidence level. Outside of these two hypotheses there remains
the possibility of a more complex effect, but in what follows we
retain the simplest assumption consistent with the present data,
namely that Finnish syllables are either monomoraic (C)V or
bimoraic (all other types).

We next consider the other parameters of the model, con-
ditional on the choice of the most likely model (model 1 in Ta-
ble 2). Fig. 3 shows the posterior distributions for coefficients
c2, c3 and c5. In this and the following diagrams the dot in-
dicates the estimate (median of the posterior distribution), the

thick line indicates the 50% CI, while the thin line indicates the
95% CI. The value of the coefficient for stress group is quite
large (median 228.1 ms). This is surprising since Finnish has
not traditionally been described as stress timed, but this is not
likely to be just an idiosyncratic feature of a single speaker,
since it exactly parallels the result we obtained with our pre-
vious speaker (median 251.7 ms) [11].

Figure 3: Credible intervals (in ms) for stress group, foot and
mora coefficients and SD of error.
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One problem with interpreting the raw coefficients is that
in a sense they represent different scales, the scales of their re-
spective oscillator periods (1/ωk) or speech rhythms. Fig. 4 on
the other hand shows the posterior distributions of the πk from
equation (2) and Fig. 1, which as mentioned earlier can be in-
terpreted as indicating the relative weighting or importance of
each level in the model. Judging from Fig. 4 it would appear
that stress group and mora levels are weighted approximately
equally, but the so called foot rhythm is much weaker. These
conclusions should be considered only tentative owing to the
nonidentifiability of these parameters in the model (dependence
on the ωk).

Figure 4: Credible intervals for πk.
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Posterior distributions for the boundary probability vectors
pj are shown schematically in Fig. 5 (sg means stress group
(and foot); 0 means neither stress group nor foot). The dis-
tributions for types a, b1 and c are remarkably similar to the
distributions for types a, b, and c for our previous speaker. The
posterior distribution for type b2 is obviously quite different in
being quite wide with a median close to 50%. The explana-
tion for this could be that there are too few cases in the data to
determine stress probability more accurately for this boundary
category. Another possible explanation is that b2, defined as it
is by orthography, does not represent a well defined boundary
type for speech. In any case, we do not find evidence that lex-
ical words inside an orthographic compound are less likely to
start a stress group; on the contrary the median probability for
type b2 is greater than for type b1.

We now turn to the relative sizes of the units uncovered
by the analysis. This is summarized in Fig. 6 in terms of the
posterior distributions (CI) for average number of feet, syllables



Figure 5: Credible intervals for boundary probabilities, types a,
b1, b2 and c.
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and morae per stress group, and the average number of syllables
and morae per foot, plotted on a logarithmic scale. The grey
areas indicate impossible values given the present data and the
restrictions outlined above in Section 2.

Figure 6: Credible intervals for average stress group and foot
length in number of feet, syllables and morae.
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Average foot length is only slightly above one syllable (me-
dian 1.198), which does not coincide with traditional descrip-
tions of the foot in Finnish (Finnish tahti, most usually two syl-
lables in length [15]). It is however almost identical to the value
obtained for our previous speaker (median 1.234 syllables). Av-
erage foot length counted in morae is almost 2 (median 1.867),
again very close to the value for our previous speaker (me-
dian 2.017 morae, with multimoraic syllables allowed). Does
Finnish perhaps have a foot rhythm which is predominantly bi-
moraic rather than bisyllabic? Such units have been proposed
for other languages, eg. Japanese [5], as well as (in a limited
way) for Finnish [6, p. 151]. While the present data are sug-
gestive, they are far from conclusive. Obviously this possibility
deserves more attention.

6. Conclusions
In this study, we extended our investigation of the main compo-
nents contributing to speech rhythm in Finnish. Pause group
durations in conversational Finnish were modeled as result-
ing from an interaction between several hypothetical oscilla-
tors with different natural frequencies. Since the present results
from a second Finnish speaker accord well with our previous
findings, we are more confident than before that Finnish conver-
sational speech has a strong component of phrasal stress rhythm
in addition to strong mora timing. A third, weaker component

between these two might be labeled a foot rhythm, although it
appears to be dominatly bimoraic rather than the traditional bi-
syllabic foot.

In addition to analyzing data from more speakers, our future
plans include investigating oscillator behavior within cycles. In
this way we hope to clarify how synchronization is achieved
between hierarchical levels. Put another way, we would like
to investigate how the deviations in angular velocity required
for synchronization are alloted throughout the cycle. To this
end two tools will likely prove valuable. It is now possible
to model stochastic differential equations using a specially de-
veloped module for WinBUGS [7]. Another possibility is task
dynamic modeling of Finnish including so called prosodic ges-
tures using TADA [8].
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