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Abstract 

A study on introducing prosodic information to acoustic 

modeling (AM) for speech recognition is reported in this paper. 

It extends the conventional context-dependent (CD) triphone 

HMM modeling approach to further consider the dependency 

of phone model on the break type of nearby inter-syllable 

boundary. Four break types are considered, including major 

break, minor break, normal non-break, and tightly-coupled 

non-break. In the training phase, break labeling is 

automatically accomplished by a Prosody Labeling and 

Modeling algorithm proposed previously. Then, prosody- and 

phonetic-dependent phone models are constructed by a 

standard decision tree-based context clustering of HMMs. The 

effectiveness of the new AM was examined on a Mandarin 

syllable recognition task. Experimental results showed that the 

new approach outperformed the conventional CD-AM on 

achieving better syllable recognition rate as well as on 

obtaining a more efficient syllable lattice with better 

compromise on complexity verse syllable coverage rate. 

 

Index Terms: acoustic modeling, speech recognition, 

prosody-dependent acoustic model, prosodic break 

 

1. Introduction 

Acoustic modeling (AM) in speech recognition (SR) is to 

build models to represent basic recognition units, such as 

phones. The most popular approach to AM is the context 

(phonetic)-dependent (CD) triphone modeling which builds 

hidden Markov models (HMMs) for phones via considering 

the coarticulation effects from two neighboring phones. The 

approach can also be extended to further consider some other 

affecting factors such as the within-word/syllable and cross-

word/syllable dependencies. Motivated by the success of a 

recent study on using prosodic information to assist in 

Mandarin SR [1], we propose a prosody- and phonetic-

dependent AM in this study aiming at improving the 

conventional CD triphone modeling via further considering 

the dependency of phone model on the break type of nearby 

inter-syllable boundary other than the phonetic effect. It is 

referred to as PD-AM. The idea is based on our intuition that 

the acoustic characteristic of the current phone is influenced 

by the neighboring phones in different degree depending on 

the break type. The degree is high when there exists no break 

between them, is low for a minor break with short pause 

duration, and becomes almost none for major break with long 

pause duration. 

The proposed PD-AM approach can be regarded as an 

extension of the conventional CD-AM considering both 

within-syllable and cross-syllable contextual phone 

dependencies. The modification lies in the finer consideration 

of the cross-syllable dependency to separate it into four cases 

for four different break types. With the modification, a more 

precise control of phonetic contextual influence on triphone 

modeling can be reached. Moreover, we also let these four 

break types be engaged with a hierarchical prosodic model 

(HPM) [2] used in the prosody labeling of the PD-AM training 

database to build their relations with both prosodic-acoustic 

features and word-level linguistic features through the HPM. 

This makes the extra break-type information carried by the 

trained PD triphone models be useful for helping linguistic 

and prosodic decoding in further processing. One possible way 

to realize the idea is to incorporate it into the prosody-assisted 

Mandarin SR using the HPM [1] to serve as a front end. 

Some related works can be found in previous studies. 

Ostendorf et al. [3,4] conducted a pilot study to investigate the 

effects of prosodic context on AM from a conversational 

corpus - the Switchboard corpus. However, the recognition 

performance of the resultant PD-AM could not compete with 

the state-of-the-art AM due to the lack of abundant prosody-

labeled speech data. In [5], Ostendorf et al. proposed a PD-

AM approach to introducing the dynamic pronunciations of 

baseform-to-surface-form phone prediction using prosodic-

acoustic features and word-base linguistic features. Only little 

effects of prosodic-acoustic features on improving the 

dynamic pronunciation prediction were found.  In [6], Chen et 

al. proposed a PD-AM conditioned on the intonational phrase 

boundary and the pitch accent. Ni et al. [7] proposed a 

prosody-dependent (PD) tonal syllable AM trained from the 

'863 corpus' labeled with the break/non-break and stress tags 

by a bootstrapped automatic prosody labeler. In [8], Huang et 

al. proposed a PD-AM based on the variable-parameter hidden 

Markov model, in which mean vectors of Gaussian mixture 

models were functions of the prominence score predicted by a 

support vector regression method given with prosodic-acoustic 

features extracted from an N-best word list.  

The paper is organized as follows. Section 2 presents the 

proposed PD-AM approach for SR in detail. Experiment to 

verify the validation of the proposed PD-AM on a Mandarin 

syllable recognition task is conducted in Section 3. Some 

conclusions and future works are given in the last section. 

 

2. The proposed PD-AM approach 

Fig. 1 shows a block diagram of the training phase of the 

PD-AM. Like the training of the conventional CD triphone 

acoustic modeling, it segments the speech database and uses 

the decision tree-based training algorithm to generate triphone 

models. The main differences lie in adding an automatic 

prosody labeling algorithm to determine break types of all 

inter-syllable boundaries of the training database and 

extending the standard decision tree-based context clustering 

of HMMs to incorporate some extra prosody (break)-related 

questions. We describe the PD-AM training in more detail as 

follows. 
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Fig. 1: A block diagram of the PD-AM training 

2.1. Experiment database and acoustic features 

Throughout the paper, the proposed PD-AM is evaluated 

on a Mandarin syllable recognition task using a large read 

speech database TCC300 [9] uttered by 300 speakers, 

including 150 females and 150 males. A training set 

containing long paragraphic utterances of 164 speakers (8.3 

hours) was used for prosody labeling and acoustic modeling, 

while a test set of 19 speakers (2 hours) was used for the 

outside test. Acoustic feature vector used in this study is a 38-

dimensional vector composed of 12 MFCC parameters 

analyzed at a 10-msec frame rate with a 32-msec Hamming 

window size, their first and second order time derivatives, 

energy parameter’s first and second order time derivatives. 

Cepstrum Mean Normalization (CMN) is employed to 

compensate the bias of channel and/or speaker. 

2.2. Prosody labeling of the speech corpus 

For prosody labeling, an indirect representation of inter-

syllable boundary is adopted in this study. All inter-syllable 

boundaries are classified into four break types: major break, 

minor break, normal non-break, and tightly-coupled non-break. 

They are denoted as BT0, BT1, BT2, and BT3. For Mandarin 

speech, BT0 and BT1 represent respectively non-breaks of 

reduced syllable boundary and of normal syllable boundary, 

which have no identifiable pauses between syllables. Second, 

BT2 represents perceivable minor-break boundary with a short 

pause. Lastly, BT3 represents perceivable major-break 

boundary with a clear long pause. 

An unsupervised prosody labeling and modeling 

algorithm (PLM) proposed previously [2] is employed to 

perform the prosody labeling. The PLM first classifies all 

inter-syllable boundaries of the speech database into seven 

finer break classes {B0, B1, B2-1, B2-2, B2-3, B3, B4} 

automatically, and then combines them into four classes via 

setting BT0={B0}, BT1={B1, B2-1, B2-3}, BT2={B2-2}, and 

BT3={B3, B4}. 

2.3. Training of PD-AM 

The original phonetic question set for CD-AM is then 

modified to add eight prosody-related questions for the 

training of PD-AM. They are in the form of “Is it a phone 

left/right neighboring to a syllable boundary of 

BT0/BT1/BT2/BT3?”. Lastly, prosody- and phonetic-

dependent phone HMM models (i.e., PD-AM) are constructed 

by a decision tree-based context clustering of HMMs. For 

comparison, conventional CD triphone models (referred to as 

PI-AM) are also generated. There are in total 114 trees (38 

phones x 3 states) generated. 

It is noted that a silence model and 4 PD short pause (PD-

sp) models are also trained. The silence model is of 3 states 

and used for modeling the long silences existing at the 

beginning and ending parts of all utterances. The 4 PD-sp 

models are designed to match the durational characteristics of 

their corresponding break types. Their topologies are 

displayed in Fig. 2. For BT0, a one-state model with state 

skipping and non-recurring is adopted to meet its distinct 

property of non-pause or very short pause. For BT1, a one-

state model with state skipping and recurring is adopted to 

match its property of non-pause or short pause. For BT2, a 

three-state model with center state self-recurring and skipping 

is adopted to fit its property of short pause. For BT3, a three-

state model with state recurring is adopted to fit its property of 

long pause. 
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Fig. 2: The topologies of 4 PD short pause models. Note that 

black solid circle nodes represent NULL states. 

 

Since more information is used in PD-AM, we let its trees 

grow deeper to have more leaf nodes while setting the average 

mixture number per leaf node be higher for PI-AM for fair 

comparison. The total leaf node number and mixture number 

are 1849 (1595) and 29584 (28710) for PD-AM (PI-AM), 

respectively. Fig. 3 displays the average log-likelihood 

evolutions for the training phases of PI-AM and PD-AM. The 

operations and settings in various stages of these two AM 

training procedures are described as follow: 

 

Stage 1: Initialization with CI phone models, 1 mixture 

Stage 2: Expanding CI-AM to initialize PD-AM/PI-AM, 1 

mixture 

Stage 3: Tree growing for PD-AM/PI-AM with state-tying, 1 

mixture 

Stage 4: Increasing mixtures of PD-AM/PI-AM with re-

segmentation, 2 mixtures 

Stage 5: Increasing mixtures of PD-AM/PI-AM with re-

segmentation, 4 mixtures 

Stage 6: Increasing mixtures of PD-AM/PI-AM with re-

segmentation, 8 mixtures 

Stage 7: Increasing mixtures and with re-segmentation, 16 

mixtures for PD-AM/18 mixtures for PI-AM. 

 

It can be found from Fig. 3 that PD-AM performs better than 

PI-AM. To further understand the effects of prosody-related 

questions on model training, we analyze the locations of 

prosody-related questions in the 114 trees generated. Table 1 

lists the number of trees that the first prosody-related question 

appears at the top 3 layers. As shown in the table, 63% of trees 

have the first prosody-related question occurring within the 

first 3 layers. Note that the average number of layers per tree 



is 7.032. This shows that prosody-related questions are 

essential factors to control the tree growing process. We also 

find that there are in total 230 times of the BT3-related 

questions. Among them, only 14 have phonetic questions of 

the same side (left or right) appearing in the lower layers of 

the same tree. This conforms to our intuition that the influence 

from a neighboring phone becomes almost none for major 

break with long pause duration. 

 
Fig. 3: The average log-likelihood evolution of the PD-AM 

training phase. 

 

Table 1: Number of trees that the first prosody-related 

question appears at the n-th layer. 

                           layer 1 2 3 > 3 

no. of trees 14 32 26 42 

cumulative no. of trees 14 46 72 114 

 

3. Syllable recognition using PD-AM 

Fig. 4 depicts a block diagram of Mandarin syllable 

recognition using PD-AM. The task is to recognize the best 

syllable sequence for the input speech, or to generate a 

syllable lattice from the input speech for further processing to 

recognize the best word sequence. It employs the PD-AM with 

a base-syllable lexicon to generate the output syllable 

sequence/lattice under the constraint of a grammar. 
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Fig. 4: A block diagram of syllable recognition using PD-AM. 

 

The base-syllable lexicon defines the constituent phone 

sequence for each of 411 Mandarin base-syllables. Table 2 

illustrates an example of entries of 32 break-dependent base-

syllables expanded from two prosody-independent base-

syllables.  

 

Table 2: An example of the base-syllable lexicon 

Lexicon Entry 

(BT_SYL_BT) 
  P1 P2      P3      P4 

BT0_yin_BT0 BT0_yi e en_BT0  

BT0_yin_BT1 BT0_yi e en_BT1  

 

 ...    

BT3_yin_BT3 BT3_yi e en_BT3  

BT0_bian_BT0 BT0_b yi a en_BT0 

BT0_bian_BT1 BT0_b yi a en_BT1 

 

 ...    

BT3_bian_BT3 BT3_b yi a en_BT3 

  ...  

    

 

Fig. 5 depicts the grammar used in the syllable 

recognition task. The grammar is a modification of the free 

syllable grammar by adding four break-dependent short pause 

models (i.e., PD-sp) shown in Fig. 2 to more strictly confine 

syllable transitions. 

 

<s> sil BTn-1_SYLn_BTn sil </s>
1( | )n nP BT BT 

sp_BTn

Fig.5: The grammar used in the Mandarin syllable recognition. 

 

Fig. 6 illustrates an example of using PD phone models to 

form a candidate for recognizing the word “yu-yin-bian-ren” 

(語音辨認, speech recognition) with inter-syllable break type 

sequence “BT1, BT2, BT1, BT3”.  

 

sil-yu+BT1_yi

yu_BT1-yi+e yi-e+en e-en+BT2_b

en_BT2-b+yi b-yi+a yi-a+en a-en+BT1_r

en_BT1-r+e r-e+en e-en+BT3_sil

sil_yu_BT1

sil

BT1_yin_BT2

BT2_bian_BT1

BT1_ren_BT3

sil

sp_BT1

sp_BT2

sp_BT1

sp_BT3

( 2 | 1)P BT BT

( 3 | 1)P BT BT
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Fig.6: An example of using PD phone models to form a 

candidate for recognizing the word “yu-yin-bian-ren”. 

Phone+break-type sequence is: “sil yu BT1 yi e en BT2 b yi a 

en BT1 r e en BT3 sil”. 

3.1. Experimental results 

We now examined the effectiveness of PD-AM and PI-AM on the 

syllable recognition task using the TCC300 database. Experimental 
results are listed in Table 3. As shown in the table, syllable 

recognition rates of 68.20% and 67.55% were obtained by the PD-AM 
and PI-AM, respectively. This shows that PD-AM slightly 

outperformed PI-AM.  

 

Table 3: Experimental results of syllable recognition 

 hit sub. ins. del. total 
recognition 

rate 

PI-AM 18235 7889 354 348 26472 67.55% 

PD-AM 18364 7790 311 318 26472 68.20% 



We also examined the performances of the syllable 

lattices generated by the PD-AM and PI-AM. Several syllable 

lattices of different size were generated. Fig. 7 displays the 

compromises of coverage rate verse lattice size (number of arc) 

for those lattices. As seen in the figure, PD-AM performed 

slightly better than PI-AM  

 

 
Fig.7: The compromises of syllable coverage rate verse lattice 

size (number of arc) for the lattices of PD-AM and PI-AM. 

3.2. Further processing 

Using the syllable lattice generated by the current study, 

further processing shown in Fig. 4 can be performed in the 

future to complete the word recognition. First, candidate 

words can be formed from the syllable lattice by using a word 

lexicon. Verification of these candidate words can be done 

using the break-type information carried in the syllable lattice 

and a break-acoustic model describing the relationship of 

break-acoustic features, such as pause duration, pitch jump 

and pre-boundary syllable lengthening, with break type of 

syllable in various word locations. The purpose of word 

verification is to exclude some improper word candidates for 

making the word lattice more compact. Lastly, rescoring of the 

word lattice can be performed using a prosody-dependent 

language model (PD-LM) and a prosodic model, such as HPM, 

to find out the best word sequence. 

 

4. Conclusions 

We have presented a new acoustic modeling approach to 

training prosody- and phonetic-dependent triphone HMM 

models and shown its effectiveness on Mandarin syllable 

recognition. Experimental results confirmed that the proposed 

PD-AM approach outperformed the conventional CD-AM. An 

extension of the current work to further processing of the 

syllable lattice for Mandarin word recognition is worth doing 

in the future. The extra break-type information carried by the 

PD-AM can be used to help SR in further processing. It is also 

worth further studying to change the current ML training to a 

discriminative training using the minimum classification error 

(MCE) criterion or the maximum mutual information (MMI) 

criterion.  
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