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Abstract 
To develop a German computer assisted language learning 
(CALL) system for students whose mother’s tongues are 
syllable- or mora-timed, a multi-stage feature normalization 
scheme which takes both word stress and sentence intonation 
patterns into consideration is proposed for German 
stressed/unstressed syllable classification. The main idea is to 
first apply Fujisaki model and band-pass filtering to pitch and 
energy contours, respectively, to remove the undesired 
sentence intonation component and sequentially normalize the 
extracted features in syllable- and supra-segment-level. 
Comparing with traditional Z-Score feature normalization 
baseline, the proposed method achieved lower classification 
error rate (27.04% vs. 31.34%) on “The Kiel Corpus of Read 
Speech, Vol. I” database. Besides, by integrating decision 
tree-based feature selection and long-span contextual prosodic 
cues, the system performance was further improved to 24.68%. 
Index Terms: prosodic feature normalization, German 
stressed/unstressed syllable classification, Fujisaki model 

1. Introduction 
Since German is a stressed-timed language, putting the stress 
on the wrong syllable is more likely to make a word 
unintelligible than is mispronouncing one of its sounds. 
Especially, for students whose mother’s tongues are syllable- 
or mora-timed, misplaced syllable stress is often their main 
problem to master German. Therefore, a German CALL 
program needs to be able to automatically identify and correct 
those pronunciation mistakes. To this aim, this study focuses 
on classifying German stressed/unstressed syllable and treats it 
as a strict two-class problem, applied only to individual 
syllables taken out of their word context. 

In the past, many prosodic features have been used to 
successfully identify stressed/unstressed syllable, because the 
stressed syllables usually have larger sound, longer time and 
change of pitch on pronunciation. For example, in [1-4], 
duration, fundamental frequency (F0) and energy contours of a 
syllable nucleus were first measured and then their derivations, 
such as max, min, mean, span, etc. (defined in Table 1) were 
extracted as the set of raw prosodic features. 

It is worth noting that the extracted raw prosodic features 
are often affected by many factors not related to stress. So, it 
is essential to do some extra processing to remove those 
unwanted interferences. For example, in [5-10], feature 
normalization methods, such as mean subtraction and unity 
variance, i.e., Z-Score are usually applied in syllable- or word-
level to generate a set of more robust prosodic features, i.e., 
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Here x and x′  are the raw and normalized prosodic features 
(see Table 1), respectively. 

Table 1. The whole set of prosodic features extracted 
for stressed/unstressed syllable classification. 

 
 
However, the extracted prosodic features are affected not 

only by the word stress but also the sentence intonation pattern. 
Therefore, it may be not enough to do only syllable- or word-
level feature normalization. 

So, in this paper, a multi-stage feature normalization 
scheme which takes both word stress and sentence intonation 
patterns into consideration is proposed. The main idea is to (1) 
first apply Fujisaki model [4] and band-pass filtering for pitch 
and energy contours, respectively, to remove the undesired 
sentence intonation (or phrase) component and extract 
prosodic features on the desired word stress (or accent) 
component; (2) then apply feature normalization in syllable-
level, (3) compute long-span contextual prosodic cues (a kind 
of difference features) in supra-segment-level (or word-level) 
and (4) apply feature normalization again. The overall block 
diagram of the proposed approach features is shown as follows: 

 

 
Figure 1: The schematic diagram of the proposed 
multi-stage feature normalization approach for pitch 
and energy-related prosodic feature extraction. 
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The rest of this paper is organized as follows. Section 2 
describes the proposed multi-stage feature normalization 
approach. Section 3 reviews decision tree-based feature 
selection method. Section 4 reports the experimental results 
evaluated on Kiel German reading speech corpus [12]. Some 
conclusions are given in the last section.  

2. Stressed/Unstressed Syllable Classifier 
Fig. 2 shows the block diagram of the proposed 
stressed/unstressed syllable classifier as a module of a German 
CALL system. It includes (1) an aligner to find the positions 
of syllable nuclei, (2) a feature extraction and multi-stage 
feature normalization module (i.e. the block diagram in Fig. 1) 
to compute a set of robust prosodic features for each syllable 
nucleus and (3) a stressed/unstressed syllable recognizer to 
classify each syllable into stressed or unstressed one. 

 

  
Figure 2: The block diagram of the proposed 
stressed/unstressed syllable classifier. 

First of all, since the goal is to develop a 
stressed/unstressed syllable classification module for German 
CALL system, it is safe to assume that the aligner has prior 
knowledge of said prompts and their transcriptions to optimize 
pronunciation evaluation. 

Secondary, in this study, pitch and energy contour related 
prosodic features are extracted using the procedure shown in 
Fig. 1. The only difference between pitch and energy contour 
processing is that for energy-related features, a specific band-
pass filter is designed and used instead of the Fujisaki model. 
Therefore, in the feature extraction and normalization module 
(Fig. 1), Fujisaki model and band-pass filtering is first applied 
to pitch and energy contours, respectively, to remove the 
undesired sentence intonation component. Then a set of 
prosodic features as defined in Table 1 is extracted and 
normalized using syllable-level Z-score method. In this stage, 
there are 9 pitch-, 9 energy- and 1 duration-related features (in 
total 19 dimensions). 

Thirdly, a set of 76-dimensional long-span contextual 
prosodic cues (difference features) are calculated in supra-
segment-level from the set of 19 features and further 
normalized using Z-Score method. 

In the following subsections, we briefly introduce (1) 
Fujisaki model analysis and (2) longer-span contextual 
prosodic cues extraction modules. 

2.1. Fujisaki Model 
The Fujisaki model, shown in Fig. 3, assumes that the F0 
contour (in a logarithmic scale) is the superposition of three 
contributions: a pitch frequency baseline (Fb), a phrase 
component (Ap) and an accent component (Aa), obtained by 
filtering two input signals. 

The first contribution (Fb) represents the pitch baseline of 
an utterance. The second contribution (Ap), which models the 
speaker declination and is characterized by a fast rise followed 
by a slower fall. The third contribution (Aa), which models 
smaller-scale prosodic variations, accounts for accent 
components. 

 

 
Figure 3: Block diagram of the Fujisaki-model (from 
[11]). 

Fig. 4 shows a typical result of the Fujisaki model 
analysis for an input pitch contour of a German utterance. 
Here the pink dots and blue lines in the second panel represent 
the raw and smoothed pitch contours, respectively. On the 
other hand, green and orange lines in the third and fourth 
panel are the phrase (Ap) and accent (Aa) components, 
respectively. Among them, only (Aa) component is related to 
syllabic stress and will be used for feature extraction. 

 

 
Figure 4: A typical example of Fujisaki model 
decomposition for an input pitch contour of a German 
utterance. 



2.2. Long-span Contextual Prosodic Cues Extraction 
To take the advantage of higher level information and alleviate 
the interferences of supra-segment- or word-level effects, the 
differences between the target syllable nucleus and its 2 
preceding and 2 successive (in total 4) neighboring syllable 
nuclei are computed as shown in Figure 5. In this stage, both 
the pitch and energy feature vectors are 36-dimension and 
duration vector is 4 dimensions. Final, there are in total 76-
dimension prosodic feature vectors. 

 

 
Figure 5: Schematic diagram of the contextual 
features extraction. 

3. Prosodic Feature Selection 
Although, there are many potential prosodic features listed in 
Table 1, it is not sure which cues are the most useful ones for 
stressed/unstressed syllable classification. In order to find the 
best features, a binary decision tree-based feature selection 
algorithm is adopted to identify the most informative features. 
Figure 6 show a typical tree built by the algorithm for energy-
related features (see Section 4.3.3) in our experiments. In this 
study, two feature selection procedures will be applied to pitch 
and energy, separately, and only the top three features chosen 
by each decision tree will be picked up (in total 7 dimensions, 
3 pitch + 3 energy + 1 duration). 

 

 
Figure 6: A typical example of decision tree for energy 
feature selection (part). 

4. Experiment and Result 
The performance of the method was evaluated on “The Kiel 
Corpus of Read Speech, Vol. I” database. In the following 
subsections, the corpus and experimental setting are first 
described and then the performances of the conventional and 
proposed feature normalization methods are compared using 
Gaussian mixture model (GMM)- and multi-layer perceptron 
(MLP)-based classifiers. 

4.1. Kiel Corpus 
The number of speakers in this corpus is 25 (12 females and 
13 males, all are native speakers). There are in total 3,890 
sentences with 17,280 words and 37,209 syllables. In average, 
there are 9.56 syllables for each sentence. Moreover, the ratio 
between stressed and unstressed syllables is about 4:6. This 
database was further divided into three disjoint subsets, 
including a training, a development and an evaluation ones by 
the ratio of 8:1:1 (28,376 training, 4,392 development and 
4,441 test syllables) in our experiments. Moreover, manual 
phone segmentations are available in this database. 

4.2. Experimental Setting 
In all the following experiments, Praat [13] was used to extract 
pitch contour of an input utterance. Fujisaki model Parameter 
Extraction Environment [14] was adopted to decompose the 
pitch contour and remove the undesired (Fb) and (Ap) 
components. On the other hand, energy contour was calculated 
using root mean square (RMS) formulation and a band-pass 
filter (bandwidth 0.5~4.5 Hz) was applied. Finally, 19-
dimenssion prosodic features were computed and expanded 
into 76-dimensional long-span contextual prosodic cues using 
given manual segmentations. Besides, decision tree-based 
feature selection, GMM and MLP modules from LNKnet 
Pattern Classification Software [15] were adopted. The 
parameters of the decision trees, GMMs and MLPs were 
empirically determined using the development data. 

4.3. Experimental Results 
Performances of the conventional and proposed method were 
evaluated and compared using error rate (Err) criterion as 
defined in Eq. (2). Three scenarios were tested including (1) 
Z-Score with and without Fujisaki model/band-pass filtering 
front-end, (2) Z-Score plus Fujisaki model/band-pass filtering 
front-end methods with and without long-span contextual 
prosodic cues, and (3) feature selection with and without long-
span contextual prosodic cues. 

 
#.of classification errors(%) 100%

#.of syllables
Err = ×   (2) 

4.3.1. Z-Score baseline w/o Fujisaki model/filtering 

First of all, the whole set of features listed in Table 1, i.e., 19 
dimensions, was extracted and normalized using (1) Z-Score 
only or (2) Fujisaki model/band-pass filtering plus Z-Score 
methods. The results in Table 2 show that MLPs outperformed 
GMMs and Fujisaki model/filtering front-end did improve the 
Err of the MLP recognizer from 31.34% to 27.04%. 

4.3.2. Proposed method w/o long-span contextual cues 

Secondary, the set of 19 features normalized using Fujisaki 
model/band-pass filtering plus Z-Score method was expanded 
into 76-dimensional long-span contextual prosodic cues. The 
results in Table 3 show that long-span contextual prosodic 
cues are very informative and further lower the Err of the 
MLP recognizer from 27.04% to 25.60%. 

4.3.3. Feature selection w/o long-span contextual cues 

Thirdly, from the results of decision tree analysis, it is found 
that the ranking of pitch-related features is “Span > 1st > 



Max”. For energy-related ones, the order is “Max > Span > 
Q3”. Therefore, a reduced set of features (7-dimension) was 
selected and further expanded into 28-dimensional long-span 
contextual feature vectors. 

Table 4 shows the results of the proposed feature 
selection method with and without contextual prosodic cues. It 
could be found by comparing Table 4 with 3 that the 
performance of the selected 7-dimensional features is slightly 
better than the whole feature set. Moreover, from Table 4, the 
selected contextual features worked much better and achieved 
the lowest Err of 24.68% using the MLP classifier. 

Table 2. Performance comparison between 
conventional Z-Score only baseline and the proposed 
Z-Score plus Fujisaki model/filtering front-end 
methods. 

 
 

Table 3. Performance of the proposed Z-Score plus 
Fujisaki model/filtering front-end methods with and 
without long-span contextual prosodic cues. 

 
 

Table 4. Performance of the proposed feature 
selection method with and without long-span 
contextual prosodic cues. 

 

5. Conclusions 
A multi-stage feature normalization scheme which takes both 
word stress and sentence intonation patterns into consideration 
is proposed in this paper. The performance evaluation results 
on “The Kiel Corpus of Read Speech, Vol. I” database has 
shown that Z-Score plus Fujisaki model/filtering front-end 
worked better than the Z-Score only baseline. Besides, further 
integration of decision tree-based feature selection and long-

span contextual prosodic cues have achieved the lowest Err of 
24.68%. These results confirm the efficiency of the proposed 
approach for German stressed/unstressed syllable 
classification. 
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