Representing the Prosodic Context of Words using Gaussian Mixture M odels
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Figure 1:Distributions and Gaussian models for “see”. Details
apper in section 1

Abstract

Different words tend to appear in different prosodic cotgex
For each word, we would like to be able to characterize its typ
ical prosodic contexts of appearance, and, for applicatmm-
poses, we would like to do this using probability distriloms.

This paper describes the phenomena and the need, and explain
a way to use Gaussian Mixture Models for modeling prosody.
Index Terms. continuous probability distributions, prosodic
features, language modeling, perplexity, lexico-prosditik-
ages.

1. Prosodic Contexts of Words

Different words tend to appear in different prosodic cotgex
For example, by plotting few hundred occurrences of the word
“se€ and “becausk (Figures 1 and 2, we see a tendency for
“seé to occur after regions of higher pitch thameécausé
Similarly, figure 3 shows that the worddtrgotteri typically
occurs after a high pitch region whereas the wardrporate
typically occurs after a region that has a lower pitch, arat th
“forgotterf has more variation in its occurrences in terms of
previous speaking rate. Further examples of variation & th
prosodic contexts of words are given in [1].

Context prosody also can differ among word senses and
homonyms, for example,nfay and “May’. Figure 4 shows
that “May” typically occurs after a regions of somewhat lower
pitch. Although a lower pitch height alone would not be ertoug
to disambiguate between the two, when combined with other
cues and lexical context this could be informative.

Such linkages between words and their prosodic contexts
are not just happenstance, rather they appear to be informat
that people know and use as clues. Experimental work sug-
gests that words appearing in prosodically unusual contmet
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Figure 2:Distributions and Gaussian models for “because
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Figure 3: Distributions and Gaussian models for “corporate”
(circles) and “forgotten” (triangles)

processed more slowly; that is, listeners use prosodicegbnt
information as part of the lexical access process [2].

In this paper, Section 2 describes the need to model such
regularities of prosodic context, Section 3 critiques trelsi-
ing approach of previous work, Section 4 details our apgroac
of modeling prosody as a mixture of Gaussians, Section 5 out-
lines the method of evaluation and presents the resultsSaod
tion 6 presents possible directions for future research.

2. Modeling Prosodic Variations

There are several possible ways to try to understand andimode
such phenomena. One would be to try to explain them away, as
mere surface manifestations of deeper phenomena. Cgriiainl

is true that words have syntactic, semantic, and pragmadfz p
erties, and these properties are in turn associated wisogio
characteristics. It is possible that, eventually, such>qtama-

tion could be developed, obviating the need to talk about the



100
80- - : 1
Y . A
= ey
£60r 1
(3] .
2 .
S ‘.
£ a0t . 4 .
. ‘A
20" : A .7 i
A A A
A . .
a- A
L L L L ° L L L e
9% 20 30 40 50 60 70 80 90 100
Pitch Range

Figure 4: Distribution for the words “may”(small circles) and
“May” (triangles).

prosodic contexts of words at all. However it is also possibl
that these lexico-prosodic linkages are direct, at leagain,
that is, that the phenomena reflect direct mental assoesatio
between words and their typical prosodic contexts.

Regardless of the underlying psychological reality and the
shape of the ultimate model, in the short term, we would like t
better model these phenomena, and this is the aim of thig.pape
Specifically, for any given word, we would like to be able to
describe its typical prosodic contexts. Our approach sedie
the consideration of the contexts of many occurrences df eac
word in a large corpus. From this we would like to be able to
distill a concise description, for each word, of what prasod
contexts it occurs with; that is, to model the prosodic cxiste
of each word.

A simple example of such a model would be a listing of
the average value, for each of the prosodic dimensions of in-
terest, for each word. However we would like something more
descriptive, better to able to capture the range and shatbe of
distributions of contexts, as seen in the Figures. Suchrigesc
tions could be useful in the long-term quest for deeper, atedi
explanations of word-context prosody.

They also can help support improved speech applications.
For speech synthesis, for example, knowing the typicalqatios
contexts for the words of a sentence could help choose pimsod
realizations in which each word is in an appropriate contegt
spoken behavior analysis, detecting departures from thiealy
lexico-prosodic linkages can help identify phenomena sagh
bids for dominance, idiosyncrasies, and emotion [4]. Feesp
recognizers, knowing which words are likely in a given piiso
context can provide a useful source of information as to twhic
word was actually spoken, especially in cases where thesacou
tic signal is ambiguous [3].

Such applications need probabilistic models. In particula
for any word of interest and any observed or possible prasodi
context, we would like a model to be able to provide an estmat
of the likelihood of that word occurring in that prosodic oext,
and of the likelihood of that prosodic context for that word.

3. Issuesin Modeling Variation

For purposes of speech recognition, specifically for the lan
guage model, we have previously used a crude way to catego-
rize the prosodic contexts of words [3]. There we discretize
each of the prosodic features, namely volume, pitch height,
pitch range and speaking rate, into levels. For example, the
speaking rate just prior to the occurence of a word could be
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Figure 5:Distribution of prosodic contexts for the word “right”.
Negative volume values occur because volume is normalized t
make 0 the typical silence value.)

slow, moderate, or fast. We then counted the frequency df eac
word in each context. Although crude, this method combined
with a basic trigram language model, gave improved estisnate
of the probabilities of the next word. Measuring the quatify
these estimates using perplexity, we found a 4.6% perfocman
improvement.

The current paper is motivated by three major flaws of this
discrete model. First, as the underlying prosodic featares
continuous, not discrete, categorizing their values léaddoss
of information. For example, a prosodic context where theesa
for a prosodic feature is slightly less than a category bannd
might be give estimates very different from one where thaeal
of the feature is just greater than that category bounddrysT
the estimates within each level are not at all informed by the
information in instances which fall even slightly outsidet
category.

Second, discretization can lead to data sparsity issues. Di
viding each feature into distinct levels comes with a tratfe-
the more levels, the more accuracy, but more levels also snean
that, given a finite set of data to analyze, each will conteiner
observations. For less frequent words, some categories may
have no observations at all. Smoothing techniques could-be i
troduced to prevent zero estimates in such cases, but #made t
to be ad hoc.

Third, this model has no natural way to capture the dis-
tributional properties of polysemous or multifunctionabnas.

For example, Figure 5 shows the prosodic context obsenatio
for the word ‘fight”. When used as an affirmativRight!), we
observed that it occurs more frequently towards the staahof
utterance and/or after regions with low volume and slow kpea
ing rate. When used as a deictight now), it is more frequent

in the middle of an utterance and with a preceding region of
high speaking rate and middle volume. To avoid the issues in
semantic and pragmatic analysis, a model of the lexicoepglios
linkages should be able to discover itself, from the dayHr-
ious usages and their typical prosodic contexts, if not thes
underlying polysemy structures.

4. Modeling Prosody using GMMs

To address the aforementioned issues with the discretelmode
we decided to model prosodic contexts using continuousi-dist
butions. Looking at Figure 6, the distribution of occurresof

the word 1” with respect to two dimensions of prosody appears
to have an oval shape, with occurrences towards the center mo



200 : I E— ‘ ‘ tice, for words with little data, models with too many Gaassi
o i ) often fail to converge during training. After a little exjreen-
tation we set the thresholds for the number of components to
use as shown in Table 1. Although these thresholds mean that
o we can model the prosodic contexts for only a fraction of the
total words, the high-frequency words that are coveredatco
s for the vast majority of the tokens in the corpus.

T Fourth, we constrained our models to have diagonal covari-
' ance matrices, to speed training and to allow convergerme ev
with relatively few samples.

Fifth, our GMMs are trained using the standard

—100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ) 2 IVIMIS i
0 0.5 1 1.5 2 25 3 35 4 Expectation-Maximization algorithm. We perforis runs for

Speaking rate each word, starting with different random initializions.adh

run is terminated when the change in log-likelihood (over th
Figure 6: Distribution of prosodic contexts and Gaussian mix-  previous iteration) falls below0~2 or 100 iterations have been

ture for the word “I". performed. Parameters found on the run with the best log-
likelihood on the training data are retained as the modetfar
word.

frequent and those toward the edges less frequent. Sinatar p

terns were seen for many other words. Thus we ChoSe 0 US€ 1ape 1:Thresholds on the number of observations required for

Gaussian distributions, as a simple (jistribution that waoniell different number of Gaussian components and the distobuti
for many problems, and appears to fit the patterns we saw. of words in the two sets

As the shapes were sometimes lumpy rather than neatly

oval, in particular for some polysemous words, we chose ¢o us Components 2-D case 4-D case
Gaussian Mixture Models (GMMs), where the probability den- Obs. reqd.| Words || Obs. reqd.| Words
sity function for each word is represented with up to threasca 3 100+ 246 100+ 375
sian components. For example, the three components found fo 2 50~ 99 153 50~ 99 269
the word 1" are depicted by ellipses in figure 6. The size of the 1 20~ 49 406 10~ 49 1386
ellipses are relative to their weight. The major and minasax | Total I | 805 ] | 2030 ]

are relative to the variance in observations.

For this study, we chose to explore these models using
the same four prosodic features mentioned above.The &satur .
were speaker-normalized [3], but not otherwise adaptiv®nr 5. Experimental Methods and Results
trolled; and they were computed over fixed-width 300 mittise
ond windows, rather than being word- or syllable-alignedctt
feature was computed the window ending at the 10 ms interval
directly before the onset of the word.

We used standard techniques for determining Gaussian

The main goal of the models is to accurately represent infor-
mation about which prosodic contexts are likely for eachdvor
Once trained, as described above, using one subset of the dat
the models are evaluated by seeing how well they describe the
. ! . : , prosodic contexts seen for words in a different subset of the
mixture models, following the equations given in [5]. Thetre data. Of course we do not expect a perfect match, since there i
of this section details how we applied them. always substantial variation, but if most of the new obsiova
First, we changed the constant in equation 1 of [5] to avoid  of word w have prosodic contexts which fall within regions rep-
underflow. This did not affect our results Since, our evalua- resented as h|gh|y ||ke|y by the modeL then the model is ajgoo

tion metric, perplexity after combination and normalipatide- one.
pends only on the likelihoods relative to other words (eiquat The training data consists 685 tracks from the Switch-
3). board [8] corpus of unstructured telephone dialogs, cosmgi

Second, we separately modeled prosodic contexts which in- about 80 hours of speech from and 650K word tokens. The tun-
cluded pitch values and those which did not. In the trainigly s ing data is a disjoint subset of about 35K tokens. This we used
approximately 40% of the data had null readings for atleasto  as we repeatedly evaluated and refined our method through sev
of the two pitch-related features (pitch height and pitaige, eral preliminary experiments [7]; the configuration whidgrp
as many of the words in the corpus were preceded by silence formed best on this subset is the one reported here. Theetest s
or by unvoiced speech. Therefore, we split the prosodic ob- contains 16 tracks of speech audio, comprising about 75 min-
servations into two disjoint subsets. The first containsda utes of audio and 10441 word tokens. For evaluation purposes
contexts where both pitch height and pitch range values;alve ¢ we limited our vocabulary to the top-5000 most frequent word
these 4D cases. Figures 1, 2 and 3 represent 2D projections of occurring in the training set. All other words are treatedais
models obtained from this set. The second set containshat ot of-vocabulary and, hence, excluded from evaluation.
observations; we call these 2D cases, since here the only us- Mathematically, one of the easiest ways to quantify this
able features are speaking rate and volume. Figures 5 and 6, would be to use the cross-entropy, however we chose to use
represent models obtained from the 2D observation subset. a less direct method in order to take advantage of our egistin

Third, we chose the number of Gaussians to use to model software infrastructure. Specifically, we evaluated oudeio
each word depending on the number of instances of that word by its ability to improve an existing, standard language etod
found in the training data. This is because Gaussian mixture one based on trigrams [6]. This again reflects a speech recog-
models, as generative models, require many observation in- nition scenario, where the recognizer is faced with an acous
stances to accurately model the behavior, and becausegdn pr  tically ambiguous signal, and needs to consult the language



model in order to obtaim priori probabilities for the various
possible words in that context. In order to obtain such proba
bility estimates, our language model used the standarddkxi
context information (trigrams), but also information piced

by our Gaussian Mixture Models. The combined probability
estimate was then used to compute the perplexity, whicterepr
sents, roughly, the amount of uncertainty remaining; tbuset
perplexity values are better.

Given a prosodic context, we computed the raw likelihood
estimate for each word using that word’s Gaussian mixture
model and equations 1 and 2. Next, these raw estimates were
converted into “scaling factors” using equation 3. Finalhese
are combined with the trigram-based probability estimate u
ing equation 4. The parameter “q” in equation 4 was 0.37, the
value which maximized performance in the preliminary exper
iments using the tuning set. The trigram estimates for words
which were too infrequent to build Gaussian models were used
unchanged. Finally these estimates are normalized to sum to
unity.

K
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whereNj is the number of words having Gaussian mixtures

Picated(0]X) = S(0)? Prgram (W) 4)

Table 2 shows the performance of the models in terms of
perplexity.

Table 2:Performance of the models

| Model | Perplexity ]

Baseline n-gram 107.77
Baseline + Gaussians 105.31

6. Discussion and Future Work

The perplexity values in table 2 show that GMM-based prasodi
models perform better than the baseline trigram model. This
shows that prosodic contexts, when modeled as a continuous
phenomenon, provide valuable information for predictihg t
next word.

However, the performance of our model was not better than
that obtained by the old, crude discrete prosodic modeh wit
which we saw perplexities below 104 [3]. While the compatiso
is not exact, because we used different window sizes in that
work, overall our GMM models do not seem to be providing
additional value. Given that they are also computationalbye
expensive to generate and evaluate, we are unable to advocat
their use for this problem. There are at least possible rsaso
why they performed less well than expected.

One reason, discovered by examining cases where our
GMM models performed poorly, was that the probability es-
timates they generated could be dominated by a single mis-
matched dimension, occasionally leading to extremely low
probability estimates for words that in fact occurred, vetaer
the discrete model was more robust to such singular mis-
matches. Some of these cases could be blamed on the features
we used, which were not robust to noise etc., but many were
simply due to word appearing in somewhat anomolous contexts
[4]. Thus the observed distributions were less tight than we
had anticipated, making Gaussians a poor match for the data.
Future research might be directed towards developing &ss s
sitive and more robust continuous models, perhaps using som
form of fuzzy categorization.

Another reason is that the mathematical justification for
using Gaussians for this problem is weak. Variation caused
by random noise from diverse uncorrelated factors can be ex-
pected to result in distributions that Gaussians model, il
example, if there is an underlying true value that undesdiks
observations, but is obscured by random measurement errors
then Gaussian distributions are generally appropriatevener,
some of the factors affecting the prosodic contexts aregbigrt
known, not random and not uncorrelated. Future researchtmig
be directed towards understanding the causes of prosodic va
ation, and in particular developing models which use prizsod
features which are better normalized or otherwise correct f
known confounding factors.

Finally, our models essentially assume feature indepen-
dence for the sake of faster computations of model parameter
However, in spoken dialog, prosodic features are ofteneeorr
lated. We are therefore now trying PCA-based dimensignalit
reduction to address this problem, and also to support reodel
which consider a larger set of prosodic context features.

7. Acknowledgments

We thank Alejandro Vega for helping with the evaluation & th
models. This work was supported in part by the NSF as project
number 11S-0914868.

8. References

Ward, N. and Vega, A. , “Towards the use of inferred cogait
states in language modeling”, int" IEEE Workshop on Auto-
matic Speech Recognition and Understanding, 323-326,.2009

Braun, B., Dainora, A., and Ernestus, M., “ An unfamiligr
tonation contour slows down on-line speech compreherision,
Language and Cognitive Process@s (3), 350-375, 2011.

Ward, Nigel G., Alejandro Vega and Timo Baumann, “Prasod
and Temporal Features for Language Modeling for Dialog”,
Speech Communicatipb4, 161-174, 2012.

Ward, N., Vega, A. and Novick, D. “Lexico-prosodic anoliea
in dialog”, Speech Prosody010.

Tomasi, C., “Estimating Gaussian mixture densitieshviM - a
tutorial”, Online: http://www.cs.duke.edu/coursesisgb4/
cps196.1/handout/EM/tomasiEM.pdf

Stolcke, A. SRILM — An extensible language modeling tagl
in Proc. Intl. Conf. Spoken Language Processing, 2002.

Karkhedkar, S. and Ward, N., “Using Gaussian mixture gied
for improved estimates of local prosody-dependent worda@ro
bilities”, UTEP Department of Computer Science Technicat R
port, in progress.

Manually corrected Switchboard word alignments. Japua
29,2003. ISP, Mississippi State University. retrieveconir
http://www.ece.msstate.edu/research/isip/projestsfiboard

(1]

(2]

(3]

[4]
(5]

(6]
[7]

(8]



