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Figure 1:Distributions and Gaussian models for “see”. Details
apper in section 1

Abstract

Different words tend to appear in different prosodic contexts.
For each word, we would like to be able to characterize its typ-
ical prosodic contexts of appearance, and, for applications pur-
poses, we would like to do this using probability distributions.
This paper describes the phenomena and the need, and explains
a way to use Gaussian Mixture Models for modeling prosody.
Index Terms: continuous probability distributions, prosodic
features, language modeling, perplexity, lexico-prosodic link-
ages.

1. Prosodic Contexts of Words
Different words tend to appear in different prosodic contexts.
For example, by plotting few hundred occurrences of the words
“see” and “because” (Figures 1 and 2, we see a tendency for
“see” to occur after regions of higher pitch than “because”.
Similarly, figure 3 shows that the word “forgotten” typically
occurs after a high pitch region whereas the word “corporate”
typically occurs after a region that has a lower pitch, and that
“ forgotten” has more variation in its occurrences in terms of
previous speaking rate. Further examples of variation in the
prosodic contexts of words are given in [1].

Context prosody also can differ among word senses and
homonyms, for example, “may” and “May”. Figure 4 shows
that “May” typically occurs after a regions of somewhat lower
pitch. Although a lower pitch height alone would not be enough
to disambiguate between the two, when combined with other
cues and lexical context this could be informative.

Such linkages between words and their prosodic contexts
are not just happenstance, rather they appear to be information
that people know and use as clues. Experimental work sug-
gests that words appearing in prosodically unusual contexts are
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Figure 2:Distributions and Gaussian models for “because”
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Figure 3: Distributions and Gaussian models for “corporate”
(circles) and “forgotten” (triangles)

processed more slowly; that is, listeners use prosodic context
information as part of the lexical access process [2].

In this paper, Section 2 describes the need to model such
regularities of prosodic context, Section 3 critiques the model-
ing approach of previous work, Section 4 details our approach
of modeling prosody as a mixture of Gaussians, Section 5 out-
lines the method of evaluation and presents the results, andSec-
tion 6 presents possible directions for future research.

2. Modeling Prosodic Variations
There are several possible ways to try to understand and model
such phenomena. One would be to try to explain them away, as
mere surface manifestations of deeper phenomena. Certainly it
is true that words have syntactic, semantic, and pragmatic prop-
erties, and these properties are in turn associated with prosodic
characteristics. It is possible that, eventually, such an explana-
tion could be developed, obviating the need to talk about the
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Figure 4:Distribution for the words “may”(small circles) and
“May” (triangles).

prosodic contexts of words at all. However it is also possible
that these lexico-prosodic linkages are direct, at least inpart,
that is, that the phenomena reflect direct mental associations
between words and their typical prosodic contexts.

Regardless of the underlying psychological reality and the
shape of the ultimate model, in the short term, we would like to
better model these phenomena, and this is the aim of this paper.
Specifically, for any given word, we would like to be able to
describe its typical prosodic contexts. Our approach relies on
the consideration of the contexts of many occurrences of each
word in a large corpus. From this we would like to be able to
distill a concise description, for each word, of what prosodic
contexts it occurs with; that is, to model the prosodic contexts
of each word.

A simple example of such a model would be a listing of
the average value, for each of the prosodic dimensions of in-
terest, for each word. However we would like something more
descriptive, better to able to capture the range and shape ofthe
distributions of contexts, as seen in the Figures. Such descrip-
tions could be useful in the long-term quest for deeper, mediated
explanations of word-context prosody.

They also can help support improved speech applications.
For speech synthesis, for example, knowing the typical prosodic
contexts for the words of a sentence could help choose prosodic
realizations in which each word is in an appropriate context. For
spoken behavior analysis, detecting departures from the typical
lexico-prosodic linkages can help identify phenomena suchas
bids for dominance, idiosyncrasies, and emotion [4]. For speech
recognizers, knowing which words are likely in a given prosodic
context can provide a useful source of information as to which
word was actually spoken, especially in cases where the acous-
tic signal is ambiguous [3].

Such applications need probabilistic models. In particular,
for any word of interest and any observed or possible prosodic
context, we would like a model to be able to provide an estimate
of the likelihood of that word occurring in that prosodic context,
and of the likelihood of that prosodic context for that word.

3. Issues in Modeling Variation
For purposes of speech recognition, specifically for the lan-
guage model, we have previously used a crude way to catego-
rize the prosodic contexts of words [3]. There we discretized
each of the prosodic features, namely volume, pitch height,
pitch range and speaking rate, into levels. For example, the
speaking rate just prior to the occurence of a word could be
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Figure 5:Distribution of prosodic contexts for the word “right”.
Negative volume values occur because volume is normalized to
make 0 the typical silence value.)

slow, moderate, or fast. We then counted the frequency of each
word in each context. Although crude, this method combined
with a basic trigram language model, gave improved estimates
of the probabilities of the next word. Measuring the qualityof
these estimates using perplexity, we found a 4.6% performance
improvement.

The current paper is motivated by three major flaws of this
discrete model. First, as the underlying prosodic featuresare
continuous, not discrete, categorizing their values leadsto a loss
of information. For example, a prosodic context where the value
for a prosodic feature is slightly less than a category boundary
might be give estimates very different from one where the value
of the feature is just greater than that category boundary. Thus,
the estimates within each level are not at all informed by the
information in instances which fall even slightly outside that
category.

Second, discretization can lead to data sparsity issues. Di-
viding each feature into distinct levels comes with a trade-off:
the more levels, the more accuracy, but more levels also means
that, given a finite set of data to analyze, each will contain fewer
observations. For less frequent words, some categories may
have no observations at all. Smoothing techniques could be in-
troduced to prevent zero estimates in such cases, but these tend
to be ad hoc.

Third, this model has no natural way to capture the dis-
tributional properties of polysemous or multifunctional words.
For example, Figure 5 shows the prosodic context observations
for the word “right”. When used as an affirmative (Right!), we
observed that it occurs more frequently towards the start ofan
utterance and/or after regions with low volume and slow speak-
ing rate. When used as a deictic (right now), it is more frequent
in the middle of an utterance and with a preceding region of
high speaking rate and middle volume. To avoid the issues in
semantic and pragmatic analysis, a model of the lexico-prosodic
linkages should be able to discover itself, from the data, the var-
ious usages and their typical prosodic contexts, if not the actual
underlying polysemy structures.

4. Modeling Prosody using GMMs
To address the aforementioned issues with the discrete model,
we decided to model prosodic contexts using continuous distri-
butions. Looking at Figure 6, the distribution of occurrences of
the word “I ” with respect to two dimensions of prosody appears
to have an oval shape, with occurrences towards the center more
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Figure 6:Distribution of prosodic contexts and Gaussian mix-
ture for the word “I”.

frequent and those toward the edges less frequent. Similar pat-
terns were seen for many other words. Thus we chose to use
Gaussian distributions, as a simple distribution that works well
for many problems, and appears to fit the patterns we saw.

As the shapes were sometimes lumpy rather than neatly
oval, in particular for some polysemous words, we chose to use
Gaussian Mixture Models (GMMs), where the probability den-
sity function for each word is represented with up to three Gaus-
sian components. For example, the three components found for
the word “I ” are depicted by ellipses in figure 6. The size of the
ellipses are relative to their weight. The major and minor axes
are relative to the variance in observations.

For this study, we chose to explore these models using
the same four prosodic features mentioned above.The features
were speaker-normalized [3], but not otherwise adaptive orcon-
trolled; and they were computed over fixed-width 300 millisec-
ond windows, rather than being word- or syllable-aligned. Each
feature was computed the window ending at the 10 ms interval
directly before the onset of the word.

We used standard techniques for determining Gaussian
mixture models, following the equations given in [5]. The rest
of this section details how we applied them.

First, we changed the constant in equation 1 of [5] to avoid
underflow. This did not affect our results since, our evalua-
tion metric, perplexity after combination and normalization, de-
pends only on the likelihoods relative to other words (equation
3).

Second, we separately modeled prosodic contexts which in-
cluded pitch values and those which did not. In the training set
approximately 40% of the data had null readings for at least one
of the two pitch-related features (pitch height and pitch range),
as many of the words in the corpus were preceded by silence
or by unvoiced speech. Therefore, we split the prosodic ob-
servations into two disjoint subsets. The first contains prosodic
contexts where both pitch height and pitch range values; we call
these 4D cases. Figures 1, 2 and 3 represent 2D projections of
models obtained from this set. The second set contains all other
observations; we call these 2D cases, since here the only us-
able features are speaking rate and volume. Figures 5 and 6,
represent models obtained from the 2D observation subset.

Third, we chose the number of Gaussians to use to model
each word depending on the number of instances of that word
found in the training data. This is because Gaussian mixture
models, as generative models, require many observation in-
stances to accurately model the behavior, and because, in prac-

tice, for words with little data, models with too many Gaussians
often fail to converge during training. After a little experimen-
tation we set the thresholds for the number of components to
use as shown in Table 1. Although these thresholds mean that
we can model the prosodic contexts for only a fraction of the
total words, the high-frequency words that are covered account
for the vast majority of the tokens in the corpus.

Fourth, we constrained our models to have diagonal covari-
ance matrices, to speed training and to allow convergence even
with relatively few samples.

Fifth, our GMMs are trained using the standard
Expectation-Maximization algorithm. We perform15 runs for
each word, starting with different random initializions. Each
run is terminated when the change in log-likelihood (over the
previous iteration) falls below10−2 or 100 iterations have been
performed. Parameters found on the run with the best log-
likelihood on the training data are retained as the model forthat
word.

Table 1:Thresholds on the number of observations required for
different number of Gaussian components and the distribution
of words in the two sets.

Components
2-D case 4-D case

Obs. reqd. Words Obs. reqd. Words

3 100+ 246 100+ 375
2 50∼ 99 153 50∼ 99 269
1 20∼ 49 406 10∼ 49 1386

Total 805 2030

5. Experimental Methods and Results
The main goal of the models is to accurately represent infor-
mation about which prosodic contexts are likely for each word.
Once trained, as described above, using one subset of the data,
the models are evaluated by seeing how well they describe the
prosodic contexts seen for words in a different subset of the
data. Of course we do not expect a perfect match, since there is
always substantial variation, but if most of the new observations
of wordw have prosodic contexts which fall within regions rep-
resented as highly likely by the model, then the model is a good
one.

The training data consists of985 tracks from the Switch-
board [8] corpus of unstructured telephone dialogs, comprising
about 80 hours of speech from and 650K word tokens. The tun-
ing data is a disjoint subset of about 35K tokens. This we used
as we repeatedly evaluated and refined our method through sev-
eral preliminary experiments [7]; the configuration which per-
formed best on this subset is the one reported here. The test set
contains 16 tracks of speech audio, comprising about 75 min-
utes of audio and 10441 word tokens. For evaluation purposes,
we limited our vocabulary to the top-5000 most frequent words
occurring in the training set. All other words are treated asout-
of-vocabulary and, hence, excluded from evaluation.

Mathematically, one of the easiest ways to quantify this
would be to use the cross-entropy, however we chose to use
a less direct method in order to take advantage of our existing
software infrastructure. Specifically, we evaluated our model
by its ability to improve an existing, standard language model,
one based on trigrams [6]. This again reflects a speech recog-
nition scenario, where the recognizer is faced with an acous-
tically ambiguous signal, and needs to consult the language



model in order to obtaina priori probabilities for the various
possible words in that context. In order to obtain such proba-
bility estimates, our language model used the standard lexical
context information (trigrams), but also information provided
by our Gaussian Mixture Models. The combined probability
estimate was then used to compute the perplexity, which repre-
sents, roughly, the amount of uncertainty remaining; thus lower
perplexity values are better.

Given a prosodic context, we computed the raw likelihood
estimate for each word using that word’s Gaussian mixture
model and equations 1 and 2. Next, these raw estimates were
converted into “scaling factors” using equation 3. Finally, these
are combined with the trigram-based probability estimate us-
ing equation 4. The parameter “q” in equation 4 was 0.37, the
value which maximized performance in the preliminary exper-
iments using the tuning set. The trigram estimates for words
which were too infrequent to build Gaussian models were used
unchanged. Finally these estimates are normalized to sum to
unity.

Gw̌(x) =
K

X

k=1

pkG(x, µk, Σk) (1)

whereG(x, µk, Σk) is given by the equation:

G(x, µk, Σk) =
1√

2π|Σk|
e
−0.5

 ||x − µk||
|Σk|

!

2

(2)

S(w̌) =
N0Gw̌(x)

P

w
Gw(x)

(3)

whereN0 is the number of words having Gaussian mixtures

Pscaled(w̌|x) = S(w̌)q
Pngram(w̌) (4)

Table 2 shows the performance of the models in terms of
perplexity.

Table 2:Performance of the models

Model Perplexity

Baseline n-gram 107.77
Baseline + Gaussians 105.31

6. Discussion and Future Work
The perplexity values in table 2 show that GMM-based prosodic
models perform better than the baseline trigram model. This
shows that prosodic contexts, when modeled as a continuous
phenomenon, provide valuable information for predicting the
next word.

However, the performance of our model was not better than
that obtained by the old, crude discrete prosodic model, with
which we saw perplexities below 104 [3]. While the comparison
is not exact, because we used different window sizes in that
work, overall our GMM models do not seem to be providing
additional value. Given that they are also computationallymore
expensive to generate and evaluate, we are unable to advocate
their use for this problem. There are at least possible reasons
why they performed less well than expected.

One reason, discovered by examining cases where our
GMM models performed poorly, was that the probability es-
timates they generated could be dominated by a single mis-
matched dimension, occasionally leading to extremely low
probability estimates for words that in fact occurred, whereas
the discrete model was more robust to such singular mis-
matches. Some of these cases could be blamed on the features
we used, which were not robust to noise etc., but many were
simply due to word appearing in somewhat anomolous contexts
[4]. Thus the observed distributions were less tight than we
had anticipated, making Gaussians a poor match for the data.
Future research might be directed towards developing less sen-
sitive and more robust continuous models, perhaps using some
form of fuzzy categorization.

Another reason is that the mathematical justification for
using Gaussians for this problem is weak. Variation caused
by random noise from diverse uncorrelated factors can be ex-
pected to result in distributions that Gaussians model well, for
example, if there is an underlying true value that underliesall
observations, but is obscured by random measurement errors,
then Gaussian distributions are generally appropriate. However,
some of the factors affecting the prosodic contexts are partially
known, not random and not uncorrelated. Future research might
be directed towards understanding the causes of prosodic vari-
ation, and in particular developing models which use prosodic
features which are better normalized or otherwise correct for
known confounding factors.

Finally, our models essentially assume feature indepen-
dence for the sake of faster computations of model parameters.
However, in spoken dialog, prosodic features are often corre-
lated. We are therefore now trying PCA-based dimensionality
reduction to address this problem, and also to support models
which consider a larger set of prosodic context features.
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