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Abstract
Textbooks in phonology often specify a distinction between
segmental features (e.g., place and manner of articulation) vs.
suprasegmental features (stress and phrasing). The distinction
between segmental and suprasegmental features is useful even
in autosegmental models like Articulatory Phonology, because
it distinguishes between features shared by the different instan-
tiations of a phoneme vs. those not so shared. In a model like
Articulatory Phonology, however, there is no requirement that
a segmental feature should be synchronous with the other fea-
tures of the same segment. Classification results are provided
from Levantine Arabic, showing that features of the primary ar-
ticulator of a fricative are acoustically signaled during frication,
but that features of the secondary articulator are signaled during
the preceding and following vowels, suggesting that the defini-
tion of the word “segmental” should not require synchronous
implementation.
Index Terms: Arabic speech processing, distinctive feature
classification, phonology, GMM supervector

1. Introduction
The binary distinction between phonologically distinct seg-
ments is often strongly correlated with the presence vs. absence
of a particular acoustic signal [10], and/or with the presence vs.
absence of a particular articulation [4]. Such apparently atomic,
approximately local binary distinctions were named “distinctive
features” [10], and the correlated acoustic and/or articulatory
events are called their “acoustic correlates” and “articulatory
correlates” [18].

Prosody is often defined to be the study of suprasegmen-
tal distinctive features [12], that is, of linguistic distinctions
that are clearly communicated from one person to another, but
that are not clearly tied to any particular phonological segment;
tones, stress, and phrase boundaries are commonly cited exam-
ples. It has been proposed that some suprasegmental features
are timed synchronously with particular segments (e.g., that
tones are timed according to the alignment of the correspond-
ing vowel nucleus), but that the beginning and end times of
suprasegmental features are not constrained to be synchronous
with the beginning and end times of the corresponding segment.
Autosegmental phonology was invented in order to account for
this lack of timing constraint: tones were said to reside on their
own autosegmental tier, in which their timing is constrained
only by links drawn explicitly across the tiers [8]. Most modern
prosodic transcription standards are autosegmental, e.g., with
one transcription tier for the phonemes of the word, another for
pitch accents, and another for phrase boundary markers [16].

It is hard to acknowledge that tones are autosegmental,

however, without acknowledging that many types of secondary
articulations are also autosegmental. In English, a syllable-
final nasal consonant induces nasalization of the preceding
vowel [17]. In Arabic, a pharyngealized alveolar consonant
induces pharyngealization in the preceding vowel, and this
pharyngealization may extend into neighboring syllables as
well [5, 20, 21]. Vowel harmony systems (e.g., advanced tongue
root in Akan [1], rounding in Turkish) can be described as the
suprasegmentalization of features of the secondary articulator
(tongue root in Akan, lips in Turkish): features of the secondary
articulator may be associated with the whole word, not with any
individual phonological segment.

The theory of Articulatory Phonology [3] generalizes Au-
tosegmental Phonology by proposing that each articulatory ges-
ture, regardless of whether it is segmental or suprasegmental in
origin, is constrained only loosely by the other gestures associ-
ated with the same word. In the TADA synthesis model [14],
each phonological segment is associated with certain gestures,
in the sense that a similar set of gestures is generated in every
word containing a particular underlying segment. The syllable
position of a segment specifies a set of timing relationships, e.g.,
syllable-initial consonants are constrained to begin synchronous
with the vowel, while syllable-final consonants are constrained
to begin after the vowel; but these timing relationships are vi-
olable and possibly incompatible, so that the balance between
them must be worked out dynamically prior to the performance
of any speech act [15].

This paper proposes a new definition of the word “segmen-
tal:” A segmental feature is defined to be a distinctive feature
that is produced in every word containing a particular phonolog-
ical segment. Specifically absent from the proposed definition
is any concept of synchronous production. A segmental feature
may begin long before the primary articulation of its associated
phonological segment, and/or end long after.

Examples are provided from Levantine Arabic. The dis-
tinction between an emphatic /s./ (saad) and a non-emphatic /s/
(seen) is audible in the preceding and following vowels: open-
ing of the pharynx for /s./ causes lowering of the tongue body in
vowels on either side [5, 20, 21]. This paper provides evidence
that the primary articulation of an Arabic strident fricative is
well classified by spectra extracted from the period of frication,
but that the secondary articulation (emphatic vs. non-emphatic)
is only well classified if the observation includes spectra from
the preceding and following vowels. Articulation of the open
pharynx apparently begins long before and ends long after the
alveolar closure. Acoustic signals marking the open pharynx
occur during the preceding and following vowels. The open
pharynx is a segmental feature, in that it occurs in every word
containing the phoneme /s./, but it need not be implemented or



signaled synchronously with the primary alveolar closure.

2. Experimental Method
The BBN/AUB Babylon Levantine Arabic Corpus [13] is a
corpus of controlled spontaneous speech, recorded using high
quality microphones at 16kHz sampling rate. According to the
corpus documentation, “Levantine Arabic is the dialect of Ara-
bic spoken by ordinary people in Lebanon, Jordan, Syria, and
Palestine.” Approximately 20% of the corpus was collected in
Boston; though not specified in the corpus documentation, it
may be assumed that subjects in Boston included people from
Lebanon, Jordan, Syria and Palestine. The remaning 80% of
the data were recorded at the American University of Beirut
in Lebanon, therefore we may assume that they were primarily
Lebanese.

The collection procedure was designed so that subjects
would produce target words and phrases in a relatively spon-
taneous speaking style. Each subject was asked to portray a
refugee being interviewed by a doctor. Each subject was given
a paragraph describing the character he or she was asked to por-
tray. To avoid priming subjects to give their answer with a par-
ticular Arabic wording, these paragraphs were given in English
rather than Arabic, e.g. “You are Maraam Samiir Shamali. You
were born on 8/7/1971 in Kuwait. You are now 31 years old.
Your mother Nabilla Habiib and your 5 brothers and sisters live
in Amman. You weigh about 50 kilos, and your height is 150
centimeters...” Each subject was then asked a series of ques-
tions, and asked to answer in Arabic. Answers ranged in length
from one word to a few sentences.

In order to select waveforms for this paper, utterance tran-
scriptions were scanned for examples of the Arabic characters
saad, seen, and sheen (IPA: /s./, /s/, and /S/). If a file contained
one of the characters saad, seen or sheen, its waveform was con-
verted into mel-frequency spectral coefficients (MFSC) using
the voicebox toolbox [2]. Levels of the log MFSC were con-
verted to Z-norm energy units by subtracting the average log
short-time energy, and dividing by standard deviation of the log
short-time energy. Any period of at least 50ms during which
the 23rd mel-frequency band (spanning 5500Hz to 7000Hz) ex-
ceeded 0.5 Z-norm energy units was marked as a strident frica-
tive. If a waveform file contained only one strident fricative,
it was retained as an example of the strident fricative named
in its transcription; if not, the waveform was discarded as am-
biguous. Filtering the database in this way resulted in a set of
634 examples of /s./, 3714 examples of /s/, and 1380 examples
of /S/, extracted from the utterances of 164 talkers. These were
divided into background training data (one third of tokens in
each class), classifier training data (one third of tokens in each
class), and test data (one third of tokens in each class). Train-
ing and testing speakers were distinct, except that one speaker
contributed data to both training and testing subcorpora.

2.1. Classifier

In order to classify a variable-length waveform into one of a
fixed number of categories, it is necessary somehow to normal-
ize its duration. In speech recognition, variable duration is nor-
mally modeled using a hidden Markov model. In this paper we
adopt a less structured approach: each waveform is modeled as
an unordered bag of cepstral vectors. The distribution of cep-
stral vectors in the bag is represented using a mixture Gaussian
supervector, whose dimension is sufficiently high to allow ef-
fective classification using simple methods such as linear dis-

criminant analysis. The Gaussian supervector representation
was originally proposed for the speaker identification task by
Hatch and Stolcke [9]; we have previously used similar meth-
ods for non-speech acoustic event detection [27], acoustic de-
tection of falling bodies [24], and a large number of computer
vision applications including the tasks of visual scene classi-
fication [22, 23], object localization [26], multiple-angle face
emotion recognition [19], and to the task of estimating a per-
son’s age based on an image of his or her face [25].

The supervector is designed so that its L2 norm approx-
imates the Karhunen-Loeve divergence between the observed
waveform segment and a universal background model (UBM).
The UBM is a Gaussian mixture model (GMM), trained using
the first third of the training data, including waveform segments
from all phonemes, and represents the likelihood of a vector of
mel-frequency cepstral coefficients (MFCCs) to be
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∑
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of the MFCC vector, and the number of mixture components is
varied experimentally in the range 1 ≤ K ≤ 64.

The second third of the data is used to train classifiers. Let
xtj be the tth frame drawn from the j th classifier training wave-
form. The posterior probability of the kth Gaussian component
is given by
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The distribution of the vectors xtj can be estimated by MAP-
adapting the mean vectors of the UBM, thus

mkj =
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(3)

where τ is a regularization parameter; we used τ = 1. The su-
pervector representation of the j th classifier training waveform
is then
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Classifier training data are used to learn a linear discrim-
inant analyzer (LDA) in the sj space. The vector sj has a
dimension of KD, where K is the number of Gaussians and
D = 13 is the length of the MFCC vector. Because of the high
dimension of the sj vector, the average within-class covariance
matrix, W , may be singular. To avoid spurious overflow, W−1

is estimated by inverting only those eigenvalues of W that are
greater than 1, thus W−1 ≈ V Λ−1V T where Λ is a diagonal
matrix whose mth diagonal element is max(1, λm), λm are the
eigenvalues of W , and V contains the corresponding eigenvec-
tors.

2.2. Scoring

Six different sets of classifiers were trained, corresponding to
six different context sizes. The smallest context size, 0ms, re-
quires classification of the fricative based only on the MFCC
vectors occurring between the onset and offset of strident frica-
tion. Larger context windows add 20ms, 50ms, 100ms, 150ms,
or 200ms of context, respectively, to both the beginning and
ending of the observation, permitting use of the preceding and



Figure 1: Classification accuracy of (a) primary articulator (/s/
vs. /S/), and (b) secondary articulator (/s/ vs. /s./) of a strident
fricative, as a function of the amount of vowel context included
in the observation. Differences of 1.86% or larger are statisti-
cally significant.

following vowels as observations relevant to classification of the
target fricative.

For each context size, two different binary classifiers were
tested: a primary place of articulation classifier (/s/ vs. /S/), and
a secondary place of articulation classifier (/s/ vs. /s./). Results
summarize the accuracy, for these two tasks, of GMM super-
vector classifiers using a variety of context windows.

3. Results
Fig. 1 shows the classification accuracy of strident fricatives in
the test database, as a function of the size of the observation
window. Fig. 1(a) shows the accuracy of binary classification
of the primary place of articulation (alveolar /s/ versus palatal
/S/). Fig. 1(b) shows the accuracy of binary classification of the
secondary place of articulation (pharyngealized /s./ versus non-
pharyngealized /s/). Differences in accuracy are statistically
significant if they exceed 1.9% (Gillick-Cox simple Z-test, [7]).

All of the classification experiments shown in Fig. 1 are
able to observe the MFCC vectors from the interval of frication
(from the onset to the offset of frication). Experiments shown
in each subplot differ only in the amount of extra information
provided to the classifier, e.g., the points at 50ms show the per-
formance of each classifier when observing the entire interval
of frication, plus 50ms prior to the onset of frication, plus 50ms
after the offset of frication.

The accuracy of either classifier gets worse when it is forced
to observe more than ±50ms of context information. When ex-
tra information causes the performance of a machine learning
algorithm to degrade, the reason is usually overtraining. Over-
training occurs when the extra information is useless for the de-
sired classification task, but random fluctuations in the training
database cause the machine learning algorithm to mistakenly
believe that the extra information is useful; when the algorithm
applies its mistaken belief to novel test data, accuracy degrades.

Figure 2: Results of this study suggest a model of gestural tim-
ing according to which the pharyngeal expansion gesture of /s./
begins at least 50ms prior and/or ends at least 50ms after the
primary tongue tip closure gesture, as schematized here.

For the task of classifying primary articulation, the best ac-
curacy is achieved when the classifier observes only the interval
of frication (context window = 0ms), suggesting that informa-
tion about the surrounding vowels is useless for the task of dif-
ferentiating between alveolar and palatal strident fricatives.

For the task of classifying secondary articulation, the best
accuracy is achieved when the classifier observes the interval of
frication, plus 50ms of information about the preceding vowel,
and 50ms of information about the following vowel. Differ-
ences between the 20ms, 50ms, and 100ms contexts are not
statistically significant, but all three context windows are sig-
nificantly more accurate than either the 0ms or 150ms con-
text settings. Thus classification of pharyngealized vs. non-
pharyngealized fricatives in Levantine Arabic is most accurate
when the classifier is able to observe 20-100ms of signal from
both the preceding and following syllables.

4. Discussion
Results of this study suggest a model of inter-gestural timing
similar to that shown in Fig. 2. Acoustic information useful for
the classification of /s/ vs. /s./ is available in the 20-100ms pre-
ceding and/or the 20-100ms following the primary tongue tip
closure gesture. In rapid speech, therefore, most of the preced-
ing vowel and most of the following vowel provide evidence
about the segmental features of the fricative.

The pharyngeal expansion gesture is clearly a segmental
distinctive feature: it exists in words containing /s./, and does
not exist in words containing /s/. One must conclude, therefore,
that segmental features need not be implemented synchronously
with the segment.

These results have interesting implications for the status of
lexical stress. In Arabic, as in English, long vowels almost al-
ways have lexical stress, while short vowels almost always do
not. In Arabic, unlike English, long vowels are written, while
short vowels are not written, therefore native speakers carry



a strong intuition that the lexically stressed vowel and its un-
stressed cognate are different phonological segments, as distinct
as /s/ and /S/. It has been argued that lexical stress is a supraseg-
mental feature because it affects the durations of phonemes
throughout the rime of the syllable (at least in English [6, 11]),
but if synchronous production is not a pre-requisite for a feature
to be called “segmental,” then it is possible that, at least in Ara-
bic, lexical stress should be considered a segmental rather than
a suprasegmental feature.

5. Conclusions
This paper demonstrated that accurate classification of the sec-
ondary place of articulation of an Arabic strident fricative re-
quires about 50ms of context from each of the surrounding vow-
els, whereas accurate classification of the primary place of ar-
ticulation is best accomplished using observations extracted ex-
clusively from the period of frication. This result contributes
to a growing body of results in the phonetics literature sug-
gesting that a distinctive feature need not be implemented syn-
chronously with a segment in order to be considered part of the
definition of that segment.

6. Acknowledgements
This work was funded by grant NPRP 09-410-1-069 from the
Qatar National Research Fund. Results and conclusions are
those of the authors, and are not endorsed by QNRF.

7. References
[1] E.N. Abakah. Remarks on the Akan vowel inventory. In Felix K.

Ameka and E. Kweku Osam, editors, New Directions in Ghanaian
Linguistics, pages 243–264. Advent Press, Accra, 2002.

[2] Mike Brookes. The voicebox toolbox for Matlab, 1998.
[3] Catherine P. Browman and Louis Goldstein. Articulatory phonol-

ogy: An overview. Phonetica, 49:155–180, 1992.
[4] N. Chomsky and M. Halle. The Sound Pattern of English. Harper

and Row, New York, NY, 1968.
[5] Stuart Davis. Emphasis spread in arabic and grounded phonology.

Linguistic Inquiry, 26(3):465–498, 1995.
[6] Beverley D. Fear, Anne Cutler, and Sally Butterfield. The

strong/weak syllable distinction in English. J. Acoust. Soc. Am.,
97(3):1893–1904, 1995.

[7] L. Gillick and S.J. Cox. Some statistical issues in the comparison
of speech recognition algorithms. In Proc. ICASSP, pages 532–
535, 1989.

[8] John A. Goldsmith. Tone melodies and the autosegment. In Pro-
ceedings of the 6th Conference on African Linguistics, Ohio State
University Working Papers in Linguistics, pages 135–147, Colum-
bus, OH, 1975. Ohio State University.

[9] Andrew O. Hatch and Andreas Stolcke. Generalized linear kernels
for one-versus-all classification: Application to speaker recogni-
tion. In Proc. ICASSP, 2006.

[10] R. Jakobson, G. Fant, and M. Halle. Preliminaries to speech anal-
ysis. Technical Report 13, MIT Acoustics Laboratory, 1952.

[11] Heejin Kim. Speech Rhythm in American English: A Corpus
Study. PhD thesis, University of Illinois at Urbana-Champaign,
2006.

[12] Ilse Lehiste. Suprasegmentals. MIT Press, Cambridge, MA, 1970.
[13] John Makhoul, Bushra Sawaydeh, Frederick Choi, and David

Stallard. BBN/AUB DARPA Babylon Levantine Arabic Corpus.
BBN Technologies, Cambridge, MA, 2002.

[14] H. Nam, L. Goldstein, E. Saltzman, and D. Byrd. TADA: An
enhanced, portable task dynamics model in matlab. Journal of the
Acoustical Society of America, 115(5,2):2430, 2004.

[15] Hosung Nam and Elliot Saltzman. A competitive, coupled oscil-
lator model of syllable structure. In International Conference on
Phonetic Sciences, volume 3, pages 2253–6, Barcelona, 2003.

[16] K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wight-
man, P. Price, J. Pierrehumbert, and J. Hirschberg. ToBI: A stan-
dard for labeling English prosody. In Proc. Internat. Conf. Spoken
Language Processing, pages 867–70, Banff, 1992.

[17] K. N. Stevens. Analog studies of the nasalization of vowels. J.
Speech Hear. Disorders, 21:218–232, 1956.

[18] Kenneth N. Stevens. Acoustic Phonetics. MIT Press, Cambridge,
MA, 1999.

[19] Hao Tang, Mark Hasegawa-Johnson, and Thomas S. Huang. Non-
frontal view facial expression recognition. In Proc. ICME, pages
1202–7, 2010.

[20] Janet C. E. Watson. The directionality of emphasis spread in ara-
bic. Linguistic Inquiry, 30(2):289–300, 1999.

[21] Munther Younes. Emphasis spread in two Arabic dialects. In
Mushira Eid and Clive Holes, editors, Perspectives on Arabic Lin-
guistics V, pages 119–145, Amsterdam, 1993. John Benjamins.

[22] Xi Zhou, Xiaodan Zhuang, Hao Tang, Mark A. Hasegawa-
Johnson, and Thomas S. Huang. Novel Gaussianized vector rep-
resentation for improved natural scene categorization. Pattern
Recognition Letters, 31(8):702–708, 2010.

[23] Xi Zhou, Xiaodan Zhuang, Shuicheng Yan, Shih-Fu Chang, Mark
Hasegawa-Johnson, and Thomas S. Huang. SIFT-bag kernel for
video event analysis. In Proc. ACM Multimedia, pages 10.1145:1–
4, 2008.

[24] Xiaodan Zhuang, Jing Huang, Gerasimos Potamianos, and Mark
Hasegawa-Johnson. Acoustic fall detection using Gaussian mix-
ture models and GMM supervectors. In Proc. ICASSP, pages 69–
72, 2009.

[25] Xiaodan Zhuang, Xi Zhou, Mark Hasegawa-Johnson, and
Thomas Huang. Face age estimation using patch-based hidden
Markov model supervectors. In Proc. Internat. Conf. Pattern
Recog. (ICPR), pages 10.1.1.139.846:1–4, 2008.

[26] Xiaodan Zhuang, Xi Zhou, Mark A. Hasegawa-Johnson, and
Thomas S. Huang. Efficient object localization with Gaussian-
ized vector representation. In Proc. IMCE, pages 89–96, 2009.

[27] Xiaodan Zhuang, Xi Zhou, Mark A. Hasegawa-Johnson, and
Thomas S. Huang. Real-world acoustic event detection. Pattern
Recognition Letters, 31(2):1543–1551, 2010.


