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Abstract
This study investigated speaker variation in the production of
various acoustic cues of prominence, including duration and in-
tensity measures. The Bayesian Information Criterion was used
to specify a threshold distinction between cues that are linearly
vs. piece-wise linearly predictors of the degree of perceived
prominence. For all speakers, some features are linear and some
features are discrete in the manner in which they cue promi-
nence. However, the results also suggest that speakers differ in
the number of prominence distinctions that they make. Under a
metrical stress notion of hierarchically layered prominence, our
result would suggest that some speakers do not exploit the full
range of prominence distinctions offered in English.
Index Terms: speech prosody, prominence, Bayesian Informa-
tion Criterion, speaker variation, corpus linguistics

1. Introduction
Functionally, prominence is used in English to mark focused
constituents, to distinguish new information from old informa-
tion, and to provide a rhythmic modulation over a sequence of
words within a phrase. Phonetically, studies have shown that
prominence can be realized through an increase in the dura-
tion of the stressed vowel, an increase in overall or sub-band
intensity, vowel formants reflecting hyper-articulation (F2) and
sonority expansion (F1), and a pitch excursion marking the
presence of a pitch accent [1, 2, 3, 4, 5, 6]. Furthermore, there is
also evidence that listeners use their expectations of prominence
placement to perceive prominence [7].

There are several ways that one could represent the phono-
logical notion of prominence. Prominence can be represented as
a binary feature, where each word is either prominent or non-
prominent. Another representation is offered by Metrical Stress
Theory [8]. Under metrical stress theory, prosodic units are ar-
ranged in a strong-weak patterning and layered on top of each
other in a hierarchical structure comprising at least two levels of
prosodic phrases, prosodic words, syllables, feet, and mora. In
this manner, prominence can be phonetically realized as a gra-
dient property, varying in relation to the depth of embedding of
the prominent element within its larger prosodic context. The
results from our previous work, described in detail in the next
section, support the hierarchical and gradient model of promi-
nence, however, much of the variance between features in the
results remained unaccounted for. One source of variability not
explored in our previous study is speaker variability. Prior, we
showed that, though all speakers cue phrasing by manipulat-
ing durational cues, speakers vary considerably in the degree
to which they manipulate the different available cues to promi-
nence [9]. The goal of the present study is to explore speaker

variability in the linear vs. discrete dependence of prominence
on a variety of acoustic cues.

Our research questions are as follows. Is there consistent
use of prominence cues within speakers for different cues, and
across speakers for the same cue? How can differences across
speakers and phonetic cues be explained by the phonological
model?

1.1. Past Work

This study is based on prominence judgments for American En-
glish from a 35,000 word subset of the Ohio State Buckeye Cor-
pus with speech samples from 27 different speakers [10]. These
transcripts were obtained using Rapid Prosody Transcription –a
method developed for obtaining word-level prominence judg-
ments from naive, native speakers of English [11]. Groups of
15-20 native speakers of English were asked to transcribe short
excerpts (15-60s) of the Buckeye Corpus. Listeners individually
tagged each word they heard as prominent in real time, thereby
performing a binary prominence judgment for each word. For
each word, we took the number of subjects that labeled the word
as prominent and divided it by the total number of listeners. We
term this value as the p-score. Utilizing this method, a corpus
of approximately five hours of data is annotated with p-scores.

The audio files together with the word and phone segmenta-
tions and p-score annotation were used to measure the correla-
tion between p-scores and various acoustic measures that have
been reported in the literature to be correlated with prominence
[9]. The overall pattern is that as the p-score increases (more
listeners hear the word as prominent), the acoustic measure also
gets stronger, which for the measures of duration and intensity
(our focus here), means increased values.

1.2. Bayesian Information Criterion

To further refine our understanding of the source of inter-
speaker variability in the patterning of prominence cues , we in-
vestigated the relationship between the distribution of p-scores
and the distribution of each acoustic cue [12]. We asked if in-
dividual cues were used to signal a single gradient, or a binary,
prominence distribution, by comparing models of the cue as a
single Gaussian distribution or two Gaussian distributions. To
obtain two distributions from a single cue we divided measures
by their associated p-score, as shown in Figure 1. This pro-
cess was done at 16 locations on the p-score continuum (cor-
responding roughly to values representing each possible num-
ber of listeners who may have marked that word as prominent).
Comparing the single distribution model and each of the many
two-distribution models, the best model was obtained by calcu-
lating the Bayesian Information Criteria (described in detail in



Figure 1: Schematic of method for partitioning features (ran-
domly generated data shown here). Note that the example data
contains data sampled from two distinct Gaussian populations.
Further note that these two distributions cannot be seen in the
1D histogram. The first step to creating two distributions for use
in the BIC analysis is to pair together feature values with their
associated p-scores. This can be visualized in a 2D histogram.
From here, we choose some p-score threshold (e.g. 0.4). All of
the feature values associated with a p-score less than or equal
to that threshold are isolated in a separate distribution from
those feature values associated with a p-score greater than the
threshold.

Section 2.2.2).
If a cue was best modeled by two distributions, with one

distribution associated with low p-scores (non-prominence) and
the other associated with high p-scores (prominence) this would
suggest that this cue operates in a binary fashion. In contrast, a
single distribution is equivalent to a linear relationship between
p-score and acoustic cue and would be consistent, for example,
with a notion of hierarchically layered prominence. Note that if
we expect that these cues all contribute the same information to
the perception of prominence and that speakers act in a uniform
manner, then we would expect that all features would be best
modeled in the same way (i.e. they would all be best modeled
by a single distribution or all best be modeled by two distribu-
tions). Further, if the best model for all cues uses two Gaussian
distributions, we would expect that the p-score threshold divid-
ing those two distributions would be the same for each cue.

Contrary to our hypothesis, we found that some cues were
best modeled by a single distribution and others were better

Feature r
Max Intensity of the Stressed Vowel 0.154
Min Intensity of the Stressed Vowel 0.155

Min Intensity of the Last Vowel 0.198
RMS Intensity of the Last Vowel 0.198
Max Intensity of the Last Vowel 0.198

Stressed Vowel Duration 0.205
Duration of the Last Vowel 0.220

Log Stressed Vowel Duration 0.239
Log Duration of the Last Vowel 0.240

Word Duration 0.476
Log Word Duration 0.498

Table 1: Table showing a positive correlation between acous-
tic features and p-scores through Pearson’s r. All correlations
were found to be statistically significant with p < 0.05.

modeled by two. Furthermore, for those cues best modeled
by two distributions, there were very different p-score thresh-
olds between cues. This result suggests that either prominence
is a gradient feature or speakers do not utilize the same set of
prominence cues, or possibly a combination of these two ex-
planations. It is this outstanding issue that the current study
investigates by conducting a BIC analysis on each feature for
individual speakers.

2. Methodology and Results
2.1. Features

Various acoustic measures that were found to be significantly
correlated with perceived prominence (p-scores) were used for
this analysis, including measures from the stressed vowel and
last (word-final) vowel of the target word, and the whole target
word. For duration of the last vowel and the whole word we
used timestamps provided by the phoneme-level transcriptions
in the Buckeye corpus.

The Buckeye corpus does not contain stress information,
so additional work was needed to extract the duration of
the stressed vowel. Using the International Speech Lexicon
(ISLEX) dictionary, which contains phoneme-level dictionary
pronunciations with stress markings, we were able to estimate
the location of the vowel carrying primary stress and use that
phoneme index within the Buckeye phoneme-level transcrip-
tions to calculate the stressed vowel duration.

A second set of duration measures was calculated by taking
the log values of all the raw duration measures.

We also calculated the minimum, maximum, and RMS in-
tensity within the stressed vowel, last vowel, and target word.
The raw intensity was extracted automatically using a praat
script which sampled the sound files at 1 ms timesteps.

In total we used four duration measures, four log duration
measures, and twelve intensity measures for a total of twenty
features. Correlation analyses were done for each measure to
test for significant and positive correlations with our dataset
(which was expanded from the dataset used in our earlier work
[4, 9]). Any measure that was not significantly correlated with
p-scores was discarded, which left eleven features to be ana-
lyzed. Table 1 summarizes the acoustic measures that were
found to be positively correlated with p-scores. These define
the feature set for the modeling experiment described below.



2.2. Model Fitting Criterion

For each feature we compared models based on different parti-
tions of the feature (the acoustic cue) as produced by individual
speakers. Partitions were made as shown in Figure 1. We first
considered the original distribution as a distinct model. Then,
for sixteen unique p-scores, with values ranging between 0 and
1, we used the p-score as a threshold for splitting the distribu-
tion of the acoustic cue. All of the cue values associated with a
p-score less than or equal to that threshold were placed in one
distribution and all of the cue values associated with a p-score
higher than that value were placed in another distribution.

This strategy was motivated by the idea that if prominence
is binary, then we might expect to have two populations within
the distribution of acoustic cue values, where one population
is associated with low p-scores and one population is associated
with high p-scores. Furthermore, assuming the feature is binary,
we do not know where such a threshold should be made, thus,
we run our analysis over every unique p-score value.

2.2.1. Fitting Data to a Model

A Gaussian distribution is characterized by a mean and a co-
variance matrix. For a given set of data we can calculate a mean
and a covariance matrix, thus “fitting” our data to the Gaussian
defined by those parameters. If p-scores are linearly dependent
on an acoustic cue, then the entire range of p-scores will be
well modeled by one Gaussian distribution. If the dependence
is non-linear e.g., quantile, then the data will be better modeled
by a two-Gaussian split. This process can be continued until the
set of Gaussian distributions perfectly represents the data. Note
however, that increasing the number of Gaussian distributions
increases the complexity of the model.

To find the best model, we can use a log likelihood estimate
if the number of distributions in our two models is the same.
In this study, however, we compared a model with a single dis-
tribution and several models with two distributions. Thus, we
used the Bayesian Information Criterion (BIC) (eq. 1).

2.2.2. Bayesian Information Criterion

The problem of determining where to partition the acoustic cue
distribution to model its relation to p-scores is qualitatively sim-
ilar, in some ways, to the problem of segmenting a distribution
of meeting-room speech into segments (partitions) correspond-
ing to different talkers. The problem of speaker segmentation
is often solved using a Bayesian Information Criterion (BIC)
[13]. The BIC measures the mutual information between the
parameters of a given model and the observed data, under the
assumption that the parameters themselves are random variables
generated by randomly resampling the training data. The BIC
thus takes the form of a penalized log likelihood function,

BIC(X; Λ) = logF (X; Λ)− (k/2)ln(n) (1)
where Λ is a parameterized distribution model containing k

parameters, and X is a dataset containing n observations. The
likelihood F (X; Λ) is guaranteed to increase when the dataset
is segmented, and separate model parameters are trained using
each half of the data. The entropy penalty (k/2)ln(n) mea-
sures, in effect, the expected increase in the log likelihood. Thus
we can compare two models by computing

∆BIC = BIC(X; Λ1)−BIC(X; Λ2) (2)
If ∆BIC is positive, it means that model Λ1 fits X better

than Λ2 by a greater-than-expected amount; if ∆BIC is nega-

tive, the improvement in fit is less than expected. This is not a
significance test; ∆BIC > 0 does not mean that Λ2 is rejected
with 95% confidence, it only means that Λ1 is better.

Within a given feature, after calculating the BIC score for
each model, we calculated Equation 2, where Λ2, the baseline,
was the model with a single Gaussian distribution. From these
∆BIC scores, the highest score indicates that the associated
p-score threshold is the optimal partition point. Note that any
∆BIC score with a value greater than zero suggests that this
feature is better modeled by a two-Gaussian distribution. If
none of the ∆BIC scores is higher than zero, this suggests that
this feature is better modeled by a single Gaussian distribution.

2.3. Speaker Variability

Different speakers sometimes produce prominence in different
ways (though the inter-speaker differences were less than we
expected). After calculating the optimal BIC partitions, to make
patterns more clear, we placed the optimal p-scores into five
bins: 0, 0.25, 0.5, 0.75, 1.0 where p-scores were less than or
equal to the bin they were placed in. We then observed the data,
looking at speaker variation within each feature to determine
how different speakers use a given cue in the feature set to signal
prominence. For each feature, we tallied the binned optimal
p-score thresholds to investigate how features in how speakers
used these features. (Figure 2). We also inverted the observation
and looked at the feature variation within each speaker (Figure
3).

Figure 2: Histograms for eight cues, showing the percent of
speakers that use that cue to signal gradient Prominence dis-
tinctions, and binary distinctions at low, mid, or high P-score
thresholds for 27 speakers.

3. Discussion
Considering the data in Figure 2, we see that all features are
most commonly cued by speakers through two distributions
with a low p-score threshold, with the exception of the log dura-
tion measures and the word duration, which are most commonly
cued by a single distribution. Furthermore, we see some varia-
tion in p-score threshold in most features.

We observed how features were being used by individual
speakers. Our results are summarized in in Figure 3. We
found that across all speakers, there are some features that are
best modeled by two distributions with a low p-score threshold.
Thus, all speakers make a binary prominent and non-prominent
distinction with a low p-score threshold. Some speakers also
make a binary distinction with a high p-score threshold or a
mid p-score threshold. At the same time, everyone has some



Figure 3: Example histograms for three speakers, showing the
breakdown of 11 cues as gradient or discrete with low, mid, or
high p-score thresholds. Speakers are clustered by the group
they fall into. The twelve speakers in Group A) use some cues
gradiently and some discretely, with a low p-score threshold.
The seven speakers in Group B) use some cues gradiently and
some discretely, with both low and mid p-score thresholds. The
four speakers in Group C) use some cues gradiently and some
discretely, with both low and high p-score thresholds. Three
speakers did not fall into these three groups utilizing some cues
gradiently and some discretely with low, mid, and high p-score
thresholds.

features that are best modeled by a single distribution. Thus, all
speakers also use cues that are associated with prominence in a
gradient manner.

The results presented here conform with the result found
in our prior study. Some of the variance in our previous study
may be explained by speaker variation, as speakers do vary to
a degree in how they cue prominence. However, by and large,
within a feature, speakers are mostly consistent as shown in Fig-
ure 2. Thus, different acoustic cues are utilized roughly consis-
tently across speakers as either binary or gradient.

As with our previous work, we found some features were
best modeled as binary across a low threshold, binary across a
high threshold, and gradient. Our results for individual speak-
ers confirms that no one uses a uniformly gradient or uniformly
binary strategy in the production of prominence. If we con-
sider a metrical stress notion of prominence, where prominence
is hierarchically layered, one possible way to account for the
plurality of strategies is to consider that some speakers “flat-
ten” the hierarchy. In other words, they do not fully exploit the
possible range of prosodic levels. If we consider the nuclear
stress/prominence to be one extreme on a “prominence contin-
uum” and an unstressed word that carries given information on
the other end, our results would suggest that not all speakers are
utilizing the levels between these two extremes.

More work is needed to investigate the status of the promi-
nence feature in speech comprehension and production, and in
the cognitive representations of individual speakers. The role of
the listener as a source of variance also needs to be investigated.

4. Conclusion
In this study we have attempted to refine our understanding of
variance across speakers in the production of prosodic promi-

nence. Our findings show that while there is some variation in
how speakers cue prominence, these variations are not funda-
mentally different–all speakers signal prominence using some
cues to express gradient prominence distinctions and other cues
to express binary distinctions. Our results support a model of
prominence as a gradient feature in the phonological represen-
tation, but variation in our results suggests that not all speakers
are exploiting all of the possible distinctions in degree of promi-
nence made available by the prosodic hierarchy. Further studies
will continue to investigate the issue of variation in prominence
production.
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