Usual voice quality features and glottal featuresfor emotional valence detection
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Abstract

We focus in this paper on the detection of emoticoitected
in real-life context. In order to improve our enuotal valence
detection system, we have tested new voice quedayures

that are mainly used for speech synthesis or voice

transformation: the relaxation coefficient (Rd) aribde

functions of phase distortion (FPD); but also usuaice

quality features. Distributions of voice qualityafares across
speakers, gender, age and emotions are shown levéDY-

HR ecological corpus. Our results conclude thattglaind

usual voice quality features are of interest forotomal

valence detection even facing diverse kind of wide

ecological situations.

Index Terms. voice quality features, emotional valence

detection, shape parameter, real-life data.

1. Introduction

In the field of emotion detection in speech, peaphenly use
prosodic features such as fundamental frequen@rggrand
duration. Psychoacoustics [1] have shown that thestm
important features in emotion perception are speaieh pitch
changes, pitch contours, voice quality, spectratext, energy
level and articulation. Montrero [2] have estimatkdt voice
quality were more important than prosodic featutes
recognize cold anger from joy. A previous studyrirGendrot
[3] underlined the importance of voice quality imational
valence perception. In our paper, we study thevaslee of
some voice quality features for emotional valenetction in
ecological data [4].

Previous studies tried to introduce voice quakgtéires in
emotion detection systems. Usual voice qualityuiess (jitter,
shimmer, unvoiced rate and harmonics-to-noise yratie use
by Clavel [5] for fear detection. The Interspeeclalignge
2009 [6], showed that perturbation such as jighinmer and
harmonicity (harmonics-to-noise ratio or spectid) were
used by the emotion detection community. Some itapbr
fields of research are working with voice qualiyafures:
speaking and singing voice analysis, speech syisttesl
voice transformation. Sun [7] introduces sub-hant®rand
harmonics features able to detect roughness. Wa\egle also
supposed to support voice quality information sashvocal
effort according to Sturmel [8]. Speech transfoioratrecent
work is highly focused on voice quality and expigss For
example, Beller [9] used formants based features \aick
quality (mainly tension in the voice). All thoseiwe quality
features must be very important for emotion detectbut we
need to evaluate how robust they are when facifggh
variability of speakers and of emotions.
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Emotion detection in real-life conditions is one thie
actual challenges in the community [10]. In thisntext
emotion detection systems must be robust to vasathlat can
not be controlled, such as the type of speaker ggis his
voice quality, his way of speaking), the recordzanditions
(room acoustics, microphone quality, distance frahe
microphone to the glottal folds) or the type of ¢imo that are
elicited. In this study, room acoustics do not viarthe whole
corpus that is used. Emotion detection is basesperech only
without any lexical information.

Section 2 presents the audio corpus we use in our

experiments. Voice quality features and their aoes with
different speakers are presented in section 3. énostional
valence classification results are summarized dtice 4.

2. Description of data

We make use of an ecological corpus collected in an
apartment at the Vision Institute (Paris): the IBNR- corpus
in which visually-impaired French people interadthwthe
robot Nao as a robotic domestic assistant [10]s Thipus has
been collected in the context of the FUlI French R@ME
project (vwww.projetromeo.com The project aims to design a
social humanoid robot which will be able to assisterly and
disabled people at home in everyday activities. Thé-HR
corpus is what we call ecological, because speakeraot
actors; they behave as they would probably do ienaay
life. Each participant of the IDV-HR data collectiaoffered
to sit comfortably face to NAO, which is sitting wio on a
coffee table. The participant is recorded with ghhquality
lapel-microphone (AKG PT40 Pro Flexx). The sampling
frequency is 44kHz and the data have been downsainipl
16kHz. A camera is placed behind the robot andsfilime
upper part of the body of the speaker for furthedies.

The corpus IDV-HR features elderly people interagtin
with the robot. The speaker is asked to play tilsessions of
five scenarios in which he pictures himself in @aion of
waking up in the morning. The robot would come tm to
chat about either his health, or the program ofdhg, etc.
The utterances of the robot are spoken through a-tde
Speech module, and are based on pre-establishedixaad
sentences. Each of these five scenarios is devtiead
different affective state, which the speaker isedsky the
robot to act: well-being, minor illness, depressatkdical
distress, happy. Each series of five scenarioerdffom the
other, by the social attitude of the robot (positifriendly,
empathetic, encouraging, or negative: directiveuhdful,
machine-like). The robot is remotely controlled tan
experimenter who selects the different socialuatts and the
utterances which match the content of the speageesch the
better. This corpus is quite challenging becausesieaker



variability is very important. Each speaker do tm Bxpress

their emotions the same way, they have differeniceo
characteristics. As the participants are not acttvation is

quite low and emotions are shaded.

22 speakers were recorded in the framework of ID¥-H
(11 males and 11 females for a median age of 8%.aldio
channels were manually segmented and annotatedvby t
expert annotators following a specific annotatiohesne [10].
After segmentation, an instance corresponds to single
speaker and is emotionally homogeneous. Three main
annotations are used for our experiments: actimatioajor
emotional label and minor emotional label. At leastotal of
6071 instances have been annotated with consensual
annotations. Major and minor emotions have beenaed to
seven macro-classes: neutral, anger, sadness,bfe@com,
happiness and positive/negative (ambiguous clasfer
segmentation, instances mean duration is 2.45m (&@4s to
5.94s), that generally allows us to have more tha® voiced
part in each instance. For each instance, we cargmdustic
feature sets (prosodic and voice quality). Theufiest are then
normalized to speaker, and the instance is claessifis
“negative” or “positive” according to a model tragha priori.

In the following experiments only a subset of insts are
used. As we have seen before, the IDV-HR corpusbkas
recorded in real-life conditions, so far emotion® aot
prototypical, they are shaded and activation is tipdsw.
Even valence detection on prototypical data isrd kesk; we
have selected instances that have been annotatiedchviigh
activation level: all instances annotated as “ahdgy” (that
already have an important activation), but only gatéve”
instances that have a high activation level. Thegative
mainly corresponds to anger and strong boredonanass,
whereas positive corresponds to joy and strongfaation.

3. Voicequality features

3.1. Usual voice quality features

The Praat tool [11] gives us a large panel of mmmsodic
features. Among them, we have selected the mostmcary
used. The unvoiced part gives indication on hoveediis the
speech signal. Harmonics-to-noise estimates thgoption of
noise in the speech signal; it highly depends am ribom
acoustics. The local jitter and shimmer evaluagesttmall time
variation of fundamental frequency and energy. Eaitro-
prosodic feature is computed on the whole instance.

3.2. Glottal features

In this paper we want to evaluate the relevancevofglottis
features: the relaxation coefficient (Rd) estimatesing
MSPD2 based method [12] and the Functions of Phase-
Distortion (FPD) [13]. The Rd coefficient is onerameter
estimated from the Liljencrants-Fant glottal modie more
important the Rd is, the more relax the voice ise Th
estimation of this parameter depends on the glottalel, this
model does not take into account all the rangeoskibilities
the human voice is able to do. Even tough it camdedl for
speech synthesis or voice transformation, we wadildg to
know if it is robust as well for emotional valendetection.
The Rd coefficient varies form 0 (very tense) to @&ax).
Some actual studies try to estimate the Rd paranuetea
wider range, 0.3 to 6, and thus allowing the maddde more

flexible. A confidence value comes with the Rd coéht;

the more important the confidence is, the moreabéd the Rd
value is. We have tried to add the mean and stdrtkasiation
of this confidence, but the results are slightlyrst¢han the
ones we have with Rd only.

The Functions of Phase-Distortion (FPD) characteriz
mainly the distortion of the phase spectrum aroitsdinear
phase component. More precisely, the FPD are also
independent of: the duration of the glottal pulsegexcitation
amplitude, its position as well as the positiontlef analysis
window and the influence of a minimum-phase compomné
the speech signal (e.g. the vocal-tract filter)tHis study and
conversely to [13], we estimate and take into antonly the
time evolution of the FPD computed from the spesigmal
without considering any glottal model (up to eqomat(5) in
[13]. This feature seems to be interesting for speanalysis
because it does not depend of a model.

Both Rd and FPD are computed on an average of 4ulse
on voiced parts only; on such a time window, thedfamental
frequency is assumed to be constant. In order te lome
parameter for an entire instance, we choose to thke
temporal mean value and the std value for each RdF&D
parameters. As the Rd value is given with a confidescore,
we take the mean Rd values that have a confidegbehthan
0.70 only. The FPD features correspond to phaseesave
have computed the unwrap mean values, this valset idown
to [-x; «).

3.3. Voice quality features and speaker variation

As the two glottal features Rd and FPD have neven bested
on a large amount of spontaneous and ecologica, des
need to evaluate how they evolve facing severadlsgs and
emotions.

It seems that elder voices have generally a smiatiethan
younger (see Figure 1). It means the elder voitesir corpus
are tenser than the younger. We have chosen thefaifeto
do the distinction between elderly people and yeurig order
to have all four sets balanced but it is obvioLet the age is
not reliable to determine if the voice sounds agedot.

Rd feature distribution across gender and age
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Figure 1:mean Rd (without speaker normalization)

distribution across gender and age (over or under 60)
on neutral and emotional instances.



3.4. Voice quality features and emotion variation

To check if voice quality features vary with emaoia@b valence,
we can use an ANOVA test to estimate if voice duali
features have a significant impact on valence itligion (see
table 1). We have selected four important featthias should
have some significant impact on emotion detectinean and
std Rd value, unvoiced ratio and the HNR.

HNR seem to be higher for negative instances (median
normalized value: 0.371) than for positive instant®.919).
It means that negative emotions have less speaubisé. The
Rd value is significantly more important for positiinstances
(0.005) than negative instances (-0.032). It mehas when
feeling a positive sensation, the speaker’s vogemore
relaxed. The other voice quality features do natehsuch as
significant differences. We are going further inceoquality
feature analysis with emotional valence classificat

Table 1. ANOVA results on speaker normalized voice
quality features.

Voice quality features p-value
Mean Rd 1.65 e-08
Std Rd 2.88 e-06
Mean FPD 4.51 e-01 (mean)
Punvoiced 2.87 e-07
Jitter 1.71 e-02
Shimmer 2.72 e-01
HNR <1.00 e-10

4. Emotion detection results

4.1. Acoustic features sets

In this paper we are using different sets of adousatures
computed with the OpenEar (OE) baseline system fs4p
basic set of features. The OpenEar system combles
prosodic and spectral features with 12 statistiogifnum,
maximum, position of minimum, of maximum, mean, gen
standard deviation, linear regression coefficiekistosis and
skewness). In our experiments we have selected loadyc
prosodic and cepstral features: fundamental frecpuégatures
(11 we removed the minimum of FO which were alway8),
energy features (12) and MFCC features (168). Welairgg
so in order to be able to compare one voice quigdyure to
the set of acoustic features. Indeed, if the agogst has too
many features, the influence of one voice quaktdire will
not be significant.

Table 2.Features sets

Basic acoustic Voice quality features

features (#features)

(#features)

OE-FO (11)
OE-Energy (12)
OE-MFCC (168)

OE-FO+Energy (23)

Rd mean and std (2)
FPD1-5 mean (5)
Local jitter (1)
Local shimmer (1)
Unvoiced ratio (1)
HNR (1)

In our experiments we combine one of the four basic
acoustic sets (from 11 to 168 features) computeth wi
OpenEar toolkit [14] with voice quality features (&Sual
features computed with with Praat [11] and 7 neatuees

coming from a glottal model) as described in tehléVe are
also testing without voice quality feature (“alopet with all
features of a same group (“allPraat”, “allLibgle®i New
glottal voice quality features are in black in @Bl Once they
are computed, each feature is normalized to thexmale of
the corresponding speaker.

4.2. Emotion classification

In order to have speaker-independent sets of speatke
have separated the 22 speakers if IDV-HR corpuswim t
groups. One experiment consists in training a
positive/negative model on a feature set on oneugrof
speakers and testing with the second group andveics.
The final detection score is the mean of both tetsets are
balanced. As we have said before, our data aregical; it
means that everything that comes to the micropli®treated.
Since valence detection is a hard task on non-typitml
data, we have selected only instances with a hitjtaagion.

Table 3.train and test sets.

Valence Speaker Speaker
Group n°1 Group n°2
Negative 210 366
Positive 225 381
4.3. Results

The following experiments are made with features #et are
described in 4.1 and libSVM tool [15] for optimigat of the
model parameters. For some experiments it appbatstie
parameters are very different when testing on gnotpand
on group n°2. Then, both positive and negativeselasare
classified in one of the two classes. The unwetylaecrage
recall can be a good result, but the minimum piecis quite
bad. In order to avoid this confusion, our resatterespond to
the minimum precision on the two classes that hiagen
classified.

voice quality and valence detection
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Figure 2: Positive/Negative with high activation
detection using different acoustic sets and voice
quality features

All percentage are reliable at an average of 3.6%afl
experiments. This score is a ratio consideringrthmber of
instances tested and the classification scoret Birsll, the
MFCC basic acoustic set (see Figure 3) does not tieaa
minimum precision over 50% (random guess) in arsesa
This is probably due to the fact that MFCCs coeffitseare
highly related with speaker characteristics, so paaker-



independent classification task leads to low scdrefigure 2,

we can see that the OE-FO+Energy set leads torbrettalts
than Energy or FO alone. With the OE-FO+FPD feasetethe
minimum precision is also over the random gues<olild
mean that FPD and FO carry different kind of infation
surely since FPD are normalized by pulse lengtle. Simmer
associated with OE-FO+Energy gives the best minimum
precision. Minimum precision are almost the samth vaill
Praat features and with all Libglottis features(Begure 3).
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Figure 3: Comparison of Positive/Negative

classification between Praat and Libglottis

5. Conclusion

Classification results may be biased because th&Vhb
classifier optimizes the C and gamma parametersomracy.
As we have seen before, accuracy can be over 500qriy
one class is recognized. Then, both features dsabysd
classification are important to estimate the irgeraf voice
quality features.

In section 3, we have shown that Rd parameter ishig
related to speaker, and more precisely to its geadd age.
Among the 6 voice quality features tested, 4 ofrtremem to
be interesting for valence discrimination: mean atdl Rd,
HNR and unvoiced ratio. In section 4, we have shahEPD
functions associated with FO features and the sleimm
associated with FO and Energy features are integegor
valence detection. In IDV-HR corpus, MFCCs featuresadb
seem to be reliable for speaker-independent expetsnJitter
and shimmer, do not conclude to good results instuaty, we
probably need to estimate them on some specifinatsg
(vowels, consonants, phonemes, fixed time windownasowe
have done for estimation of Rd and FPD, on a smatiber
of pulses. Estimation of Rd parameter on wider rastysuld
lead to a better classification score with Rd fezguin order
to improve performances of the classification mdthwe need
first, to optimize the model with more data, andaswlly, to
avoid the libSVM classifier bias we have mentiohedore. In
this paper we have chosen to compute Rd and FPOrésabn
voiced parts only; further studies will try to gabre precise
time window (phoneme, syllable, fixed) for high-¢d¥eatures
computation (such as Rd, FPD, but also jitter, shemretc.).

As they try to represent the speech signal in \exgct
way, features developed in speech synthesis orckpee
transformation support very useful information femotion
detection. Our results show that voice qualitydesd such as
Rd parameter and FPD functions might be useful flast@n

detection, even facing diverse kind of voices imlegical
situations. Further studies will integrate thosatdees to a
more complete set to improve emotional valence ctiete
This introduces a new challenge: is it possiblbaee features
that are as flexible as possible to face the hug@bility we
have in real-life interactions?
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