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Abstract 
We focus in this paper on the detection of emotions collected 
in real-life context. In order to improve our emotional valence 
detection system, we have tested new voice quality features 
that are mainly used for speech synthesis or voice 
transformation: the relaxation coefficient (Rd) and the 
functions of phase distortion (FPD); but also usual voice 
quality features. Distributions of voice quality features across 
speakers, gender, age and emotions are shown over the IDV-
HR ecological corpus. Our results conclude that glottal and 
usual voice quality features are of interest for emotional 
valence detection even facing diverse kind of voices in 
ecological situations. 
Index Terms: voice quality features, emotional valence 
detection, shape parameter, real-life data. 

1. Introduction 
In the field of emotion detection in speech, people mainly use 
prosodic features such as fundamental frequency, energy and 
duration. Psychoacoustics [1] have shown that the most 
important features in emotion perception are speech rate, pitch 
changes, pitch contours, voice quality, spectral content, energy 
level and articulation. Montrero [2] have estimated that voice 
quality were more important than prosodic features to 
recognize cold anger from joy. A previous study from Gendrot 
[3] underlined the importance of voice quality in emotional 
valence perception. In our paper, we study the relevance of 
some voice quality features for emotional valence detection in 
ecological data [4]. 

Previous studies tried to introduce voice quality features in 
emotion detection systems. Usual voice quality features (jitter, 
shimmer, unvoiced rate and harmonics-to-noise ratio) are use 
by Clavel [5] for fear detection. The Interspeech challenge 
2009 [6], showed that perturbation such as jitter, shimmer and 
harmonicity (harmonics-to-noise ratio or spectral tilt) were 
used by the emotion detection community. Some important 
fields of research are working with voice quality features: 
speaking and singing voice analysis, speech synthesis and 
voice transformation. Sun [7] introduces sub-harmonics and 
harmonics features able to detect roughness. Wavelets are also 
supposed to support voice quality information such as vocal 
effort according to Sturmel [8]. Speech transformation recent 
work is highly focused on voice quality and expressivity. For 
example, Beller [9] used formants based features and voice 
quality (mainly tension in the voice). All those voice quality 
features must be very important for emotion detection, but we 
need to evaluate how robust they are when facing a high 
variability of speakers and of emotions. 

Emotion detection in real-life conditions is one of the 
actual challenges in the community [10]. In this context 
emotion detection systems must be robust to variables that can 
not be controlled, such as the type of speaker (his age, his 
voice quality, his way of speaking), the recording conditions 
(room acoustics, microphone quality, distance from the 
microphone to the glottal folds) or the type of emotion that are 
elicited. In this study, room acoustics do not vary in the whole 
corpus that is used. Emotion detection is based on speech only 
without any lexical information.  

Section 2 presents the audio corpus we use in our 
experiments. Voice quality features and their variations with 
different speakers are presented in section 3. Our emotional 
valence classification results are summarized in section 4. 

2. Description of data 
We make use of an ecological corpus collected in an 

apartment at the Vision Institute (Paris): the IDV-HR corpus 
in which visually-impaired French people interact with the 
robot Nao as a robotic domestic assistant [10]. This corpus has 
been collected in the context of the FUI French ROMEO 
project (www.projetromeo.com). The project aims to design a 
social humanoid robot which will be able to assist elderly and 
disabled people at home in everyday activities. The IDV-HR 
corpus is what we call ecological, because speakers are not 
actors; they behave as they would probably do in everyday 
life. Each participant of the IDV-HR data collection is offered 
to sit comfortably face to NAO, which is sitting down on a 
coffee table. The participant is recorded with a high quality 
lapel-microphone (AKG PT40 Pro Flexx). The sampling 
frequency is 44kHz and the data have been downsampled to 
16kHz. A camera is placed behind the robot and films the 
upper part of the body of the speaker for further studies.  

The corpus IDV-HR features elderly people interacting 
with the robot. The speaker is asked to play three sessions of 
five scenarios in which he pictures himself in a situation of 
waking up in the morning. The robot would come to him to 
chat about either his health, or the program of the day, etc. 
The utterances of the robot are spoken through a Text-to-
Speech module, and are based on pre-established and fixed 
sentences. Each of these five scenarios is devoted to a 
different affective state, which the speaker is asked by the 
robot to act: well-being, minor illness, depressed, medical 
distress, happy. Each series of five scenarios differ from the 
other, by the social attitude of the robot (positive: friendly, 
empathetic, encouraging, or negative: directive, doubtful, 
machine-like). The robot is remotely controlled by an 
experimenter who selects the different social attitudes and the 
utterances which match the content of the speaker's speech the 
better. This corpus is quite challenging because the speaker 



variability is very important. Each speaker do to not express 
their emotions the same way, they have different voice 
characteristics. As the participants are not actors, activation is 
quite low and emotions are shaded. 

22 speakers were recorded in the framework of IDV-HR 
(11 males and 11 females for a median age of 59). The audio 
channels were manually segmented and annotated by two 
expert annotators following a specific annotation scheme [10]. 
After segmentation, an instance corresponds to one single 
speaker and is emotionally homogeneous. Three main 
annotations are used for our experiments: activation, major 
emotional label and minor emotional label. At least, a total of 
6071 instances have been annotated with consensual 
annotations. Major and minor emotions have been reduced to 
seven macro-classes: neutral, anger, sadness, fear, boredom, 
happiness and positive/negative (ambiguous class). After 
segmentation, instances mean duration is 2.45s (from 0.24s to 
5.94s), that generally allows us to have more than one voiced 
part in each instance. For each instance, we compute acoustic 
feature sets (prosodic and voice quality). The features are then 
normalized to speaker, and the instance is classified as 
“negative” or “positive” according to a model trained a priori.  

In the following experiments only a subset of instances are 
used. As we have seen before, the IDV-HR corpus has been 
recorded in real-life conditions, so far emotions are not 
prototypical, they are shaded and activation is mostly low. 
Even valence detection on prototypical data is a hard task; we 
have selected instances that have been annotated with a high 
activation level: all instances annotated as “anger”, “joy” (that 
already have an important activation), but only “negative” 
instances that have a high activation level. Then negative 
mainly corresponds to anger and strong boredom instances, 
whereas positive corresponds to joy and strong satisfaction. 

3. Voice quality features 

3.1. Usual voice quality features 

The Praat tool [11] gives us a large panel of micro-prosodic 
features. Among them, we have selected the most commonly 
used. The unvoiced part gives indication on how voiced is the 
speech signal. Harmonics-to-noise estimates the proportion of 
noise in the speech signal; it highly depends on the room 
acoustics. The local jitter and shimmer evaluate the small time 
variation of fundamental frequency and energy. Each micro-
prosodic feature is computed on the whole instance. 

3.2. Glottal features 

In this paper we want to evaluate the relevance of two glottis 
features: the relaxation coefficient (Rd) estimated using 
MSPD2 based method [12] and the Functions of Phase-
Distortion (FPD) [13]. The Rd coefficient is one parameter 
estimated from the Liljencrants-Fant glottal model. The more 
important the Rd is, the more relax the voice is. The 
estimation of this parameter depends on the glottal model, this 
model does not take into account all the range of possibilities 
the human voice is able to do. Even tough it can be used for 
speech synthesis or voice transformation, we would like to 
know if it is robust as well for emotional valence detection. 
The Rd coefficient varies form 0 (very tense) to 2.5 (relax). 
Some actual studies try to estimate the Rd parameter on a 
wider range, 0.3 to 6, and thus allowing the model to be more 

flexible. A confidence value comes with the Rd coefficient; 
the more important the confidence is, the more reliable the Rd 
value is. We have tried to add the mean and standard deviation 
of this confidence, but the results are slightly worst than the 
ones we have with Rd only. 

The Functions of Phase-Distortion (FPD) characterize 
mainly the distortion of the phase spectrum around its linear 
phase component. More precisely, the FPD are also 
independent of: the duration of the glottal pulse, its excitation 
amplitude, its position as well as the position of the analysis 
window and the influence of a minimum-phase component of 
the speech signal (e.g. the vocal-tract filter). In this study and 
conversely to [13], we estimate and take into account only the 
time evolution of the FPD computed from the speech signal 
without considering any glottal model (up to equation (5) in 
[13]. This feature seems to be interesting for speech analysis 
because it does not depend of a model. 

Both Rd and FPD are computed on an average of 4 pulses 
on voiced parts only; on such a time window, the fundamental 
frequency is assumed to be constant. In order to have one 
parameter for an entire instance, we choose to take the 
temporal mean value and the std value for each Rd and FPD 
parameters. As the Rd value is given with a confidence score, 
we take the mean Rd values that have a confidence higher than 
0.70 only. The FPD features correspond to phases values, we 
have computed the unwrap mean values, this value is set down 
to [–π; π]. 

3.3. Voice quality features and speaker variation 

As the two glottal features Rd and FPD have never been tested 
on a large amount of spontaneous and ecological data, we 
need to evaluate how they evolve facing several speakers and 
emotions. 

It seems that elder voices have generally a smaller Rd than 
younger (see Figure 1). It means the elder voices in our corpus 
are tenser than the younger. We have chosen the age of 60 to 
do the distinction between elderly people and younger in order 
to have all four sets balanced but it is obvious that the age is 
not reliable to determine if the voice sounds aged or not. 

 

Figure 1: mean Rd (without speaker normalization) 
distribution across gender and age (over or under 60) 
on neutral and emotional instances. 



3.4. Voice quality features and emotion variation 

To check if voice quality features vary with emotional valence, 
we can use an ANOVA test to estimate if voice quality 
features have a significant impact on valence distribution (see 
table 1). We have selected four important features that should 
have some significant impact on emotion detection: mean and 
std Rd value, unvoiced ratio and the HNR. 

HNR seem to be higher for negative instances (median 
normalized value: 0.371) than for positive instances (-0.919). 
It means that negative emotions have less spectral noise. The 
Rd value is significantly more important for positive instances 
(0.005) than negative instances (-0.032). It means that when 
feeling a positive sensation, the speaker’s voice is more 
relaxed. The other voice quality features do not have such as 
significant differences. We are going further in voice quality 
feature analysis with emotional valence classification. 

Table 1. ANOVA results on speaker normalized voice 
quality features. 

Voice quality features p-value 
Mean Rd 1.65 e-08 
Std Rd 2.88 e-06 

Mean FPD 4.51 e-01 (mean) 
Punvoiced 2.87 e-07 

Jitter 1.71 e-02 
Shimmer 2.72 e-01 

HNR <1.00 e-10 

4. Emotion detection results 

4.1. Acoustic features sets 

In this paper we are using different sets of acoustic features 
computed with the OpenEar (OE) baseline system [14] as a 
basic set of features. The OpenEar system combines 16 
prosodic and spectral features with 12 statistics (minimum, 
maximum, position of minimum, of maximum, mean, range, 
standard deviation, linear regression coefficients, kurtosis and 
skewness). In our experiments we have selected only basic 
prosodic and cepstral features: fundamental frequency features 
(11 we removed the minimum of F0 which were always null), 
energy features (12) and MFCC features (168). We are doing 
so in order to be able to compare one voice quality feature to 
the set of acoustic features. Indeed, if the acoustic set has too 
many features, the influence of one voice quality feature will 
not be significant. 

Table 2. Features sets 

Basic acoustic 
features (#features) 

Voice quality features 
(#features) 

OE-F0 (11) 
OE-Energy (12) 
OE-MFCC (168) 

OE-F0+Energy (23) 

Rd mean and std (2) 
FPD1-5 mean (5) 

Local jitter (1) 
Local shimmer (1) 
Unvoiced ratio (1) 

HNR (1) 
In our experiments we combine one of the four basic 

acoustic sets (from 11 to 168 features) computed with 
OpenEar toolkit [14] with voice quality features (5 usual 
features computed with with Praat [11] and 7 new features 

coming from a glottal model) as described in table 2. We are 
also testing without voice quality feature (“alone”) or with all 
features of a same group (“allPraat”, “allLibglottis”). New 
glottal voice quality features are in black in table 2. Once they 
are computed, each feature is normalized to the mean value of 
the corresponding speaker. 

4.2. Emotion classification 

In order to have speaker-independent sets of speakers, we 
have separated the 22 speakers if IDV-HR corpus in two 
groups. One experiment consists in training a 
positive/negative model on a feature set on one group of 
speakers and testing with the second group and vice-versa. 
The final detection score is the mean of both tests. All sets are 
balanced. As we have said before, our data are ecological; it 
means that everything that comes to the microphone is treated. 
Since valence detection is a hard task on non-prototypical 
data, we have selected only instances with a high activation.  

Table 3. train and test sets. 

Valence Speaker 
Group n°1 

Speaker 
Group n°2 

Negative 210 366 
Positive 225 381 

 

4.3. Results 

The following experiments are made with features sets that are 
described in 4.1 and libSVM tool [15] for optimisation of the 
model parameters. For some experiments it appears that the 
parameters are very different when testing on group n°1 and 
on group n°2. Then, both positive and negative classes are 
classified in one of the two classes. The unweighted average 
recall can be a good result, but the minimum precision is quite 
bad. In order to avoid this confusion, our results correspond to 
the minimum precision on the two classes that have been 
classified. 
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Figure 2: Positive/Negative with high activation 
detection using different acoustic sets and voice 
quality features 

All percentage are reliable at an average of 3.5% for all 
experiments. This score is a ratio considering the number of 
instances tested and the classification score. First of all, the 
MFCC basic acoustic set (see Figure 3) does not lead to a 
minimum precision over 50% (random guess) in any cases. 
This is probably due to the fact that MFCCs coefficients are 
highly related with speaker characteristics, so a speaker-



independent classification task leads to low scores. In figure 2, 
we can see that the OE-F0+Energy set leads to better results 
than Energy or F0 alone. With the OE-F0+FPD feature set, the 
minimum precision is also over the random guess. It could 
mean that FPD and F0 carry different kind of information 
surely since FPD are normalized by pulse length. The shimmer 
associated with OE-F0+Energy gives the best minimum 
precision. Minimum precision are almost the same with all 
Praat features and with all Libglottis features (see Figure 3). 
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Figure 3: Comparison of Positive/Negative 
classification between Praat and Libglottis 

5. Conclusion 
Classification results may be biased because the libSVM 
classifier optimizes the C and gamma parameters on accuracy. 
As we have seen before, accuracy can be over 50%, but only 
one class is recognized. Then, both features analysis and 
classification are important to estimate the interest of voice 
quality features. 

In section 3, we have shown that Rd parameter is highly 
related to speaker, and more precisely to its gender and age. 
Among the 6 voice quality features tested, 4 of them seem to 
be interesting for valence discrimination: mean and std Rd, 
HNR and unvoiced ratio. In section 4, we have seen that FPD 
functions associated with F0 features and the shimmer 
associated with F0 and Energy features are interesting for 
valence detection. In IDV-HR corpus, MFCCs features do not 
seem to be reliable for speaker-independent experiments. Jitter 
and shimmer, do not conclude to good results in our study, we 
probably need to estimate them on some specific signals 
(vowels, consonants, phonemes, fixed time window) or as we 
have done for estimation of Rd and FPD, on a small number 
of pulses. Estimation of Rd parameter on wider range should 
lead to a better classification score with Rd features. In order 
to improve performances of the classification method, we need 
first, to optimize the model with more data, and secondly, to 
avoid the libSVM classifier bias we have mentioned before. In 
this paper we have chosen to compute Rd and FPD features on 
voiced parts only; further studies will try to get more precise 
time window (phoneme, syllable, fixed) for high-level features 
computation (such as Rd, FPD, but also jitter, shimmer, etc.).  

As they try to represent the speech signal in very exact 
way, features developed in speech synthesis or speech 
transformation support very useful information for emotion 
detection. Our results show that voice quality features such as 
Rd parameter and FPD functions might be useful for emotion 

detection, even facing diverse kind of voices in ecological 
situations. Further studies will integrate those features to a 
more complete set to improve emotional valence detection. 
This introduces a new challenge: is it possible to have features 
that are as flexible as possible to face the huge variability we 
have in real-life interactions? 
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