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Abstract
In parametric text-to-speech synthesis using Hidden Markov
Model (HMM), the fundamental frequency (F0) parameter
modelling is important because it has a direct effect on the
prosody of synthetic speech. F0 is typically modelled by a dis-
crete distribution for unvoiced speech and a continuous distri-
bution for voiced, by using a multi-space distribution (MSD).
However, F0 modelling using MSD-HMM is not accurate
around the voiced-unvoiced (V-UV) and (UV-V) transitions and
it is affected by voicing decision errors of the F0 estimation al-
gorithm. In order to reduce this problem, HMM-based speech
synthesisers have been proposed that model F0 using contin-
uous HMM. This approach usually obtains the continuous F0
contours by interpolating F0 in unvoiced regions. The problem
with this method is that it is affected by voiced decision errors
during speech analysis. For example, if voiced speech segments
are incorrectly classified as unvoiced, the F0 contour in this re-
gion is obtained by interpolation which might be a poor estimate
of the natural F0. This paper proposes to use an F0 estimation
method that does not require a hard voiced/unvoiced classifica-
tion and produces a reasonable smooth F0 contour. The robust-
ness of this method was studied in the conditions of high-quality
recorded speech and recorded speech with additive noise. The
motivation for using noisy speech was to study the effect of
voiced decision errors on the quality of the synthetic speech.
Index Terms: continuous F0 modelling, voicing strength,
HMM-based speech synthesis

1. Introduction
Accurate prediction of F0 in speech synthesis is important be-
cause F0 carries prosodic information and it affects the percep-
tual quality of synthetic speech. In HMM-based speech syn-
thesis, contribution to F0 errors come from the F0 estimation
method as well as the weakness of the underlying statistical
method.

The standard method for modelling F0 in HMM-based
speech synthesis is to use MSD-HMM [1]. This extension to
HMM is used because the estimated F0 contour is assumed to be
made of continuous values in voiced regions and discrete values
in unvoiced regions (set equal to zero). MSD-HMM permits to
model F0 in voiced regions using a continuous probability dis-
tribution and using a discrete distribution in unvoiced regions.
However, the voiced/unvoiced (V/U) decision, during synthesis,
is based on weights of distributions in each state which is prone
to error when the difference between weights of distributions is
small [2].

In order to overcome the limitations of MSD-HMM for
F0 modelling in statistical speech synthesis, recent improve-

ments have been proposed which are based on statistical mod-
els using continuous distributions only. One such improvement
consists of using globally tied distribution HMM (GTD-HMM)
[3] instead of MSD-HMM. The advantage of GTD-HMM over
MSD-HMM is better modelling of F0 at the transitions between
voiced and unvoiced regions, e.g., dynamic features are esti-
mated at the boundaries between voiced and unvoiced regions
unlike in MSD-HMM. However, in both methods the V/U de-
cision during synthesis is state-based and prone to error. An al-
ternative approach is to obtain a continuous F0 contour during
speech analysis and to model F0 using continuous HMM. This
technique has been used by interpolating F0 in unvoiced regions
using a spline or cubic function, e.g. [4], or by using a mixture
of random noise and an exponential decay function of a running
average, e.g. [5]. In this case, the estimation and continuous
modelling of an additional parameter called voicing strength is
necessary, for deciding if a speech frame is voiced or unvoiced
during synthesis. However, a weakness of this method is that it
is affected by the V/U decision of the F0 estimation method dur-
ing analysis. For instance, the interpolated F0 values might be a
poor estimation of the natural F0 values for frames incorrectly
classified as unvoiced.

This paper proposes to estimate continuous F0 contour di-
rectly from the speech using a glottal closure instant (GCI) de-
tection method. The advantage of this approach is that it avoids
the effects of V/U decision errors in continuous F0 contours es-
timated during analysis. In order to better study this effect of
V/UV decision errors on the quality of the synthetic speech, a
noisy speech database was used in the experiments. Another
motivation for using noisy speech is that clean speech is not al-
ways available in certain real-time applications of HMM-based
speech synthesis. For example, there are techniques to adapt
HMMs to the speaker’s voice using a small amount of data from
the target speaker. However, this speech data might be noisy if
the speaker is using low quality recording equipment such as a
mobile device or if the recording environment is noisy.

2. HMM-based Speech Synthesiser Using
Continuous F0

2.1. F0 Estimation Based on GCI Detection

The F0 of a voiced speech segment can be determined using the
GCIs, which are also called instants of maximum excitation or
epochs. F0 is calculated as F0 = 1/T0, in which the funda-
mental period T0 is estimated as the duration between consecu-
tive GCIs. In this work, the GCIs are obtained using a method
called SEDREAMS (Speech Event Detection using the Resid-
ual Excitation And a Mean-based Signal) [6]. This method is



a two-step process. In the first step, the time interval between
which the GCI is expected to lie is estimated as the interval
between the minima and following positive zero-crossing of a
mean-based signal, which is calculated from the speech signal.
In the second step, the GCI is estimated by finding a local max-
imum in the LP-residual that falls within the expected interval.

The SEDREAMS method was chosen in this work because
it is accurate, robust to noise and also detects GCIs in regions of
unvoiced speech. Note that the GCI is meaningless for unvoiced
speech because there is no glottal activity during human produc-
tion of unvoiced speech. The GCIs detected in voiceless regions
correspond to peaks located at unpredictable points within the
analysis interval and that depend on the SEDREAMS algorithm
constraints (such as minimum and maximum F0). However,
such method is expected to correctly capture GCIs in regions
which are a mix of voiced and voiced speech, such as voiced
fricatives, which are often not detected by most epoch detection
algorithms which perform a voiced/unvoiced classification.

Finally, in this work a smoothing operation using the me-
dian function is performed on the resulting F0 contour in un-
voiced regions, to avoid peaks in the F0 contour which might
affect the statistical modelling by HMMs.

2.2. Voicing Strength Estimation Method

2.2.1. Voicing Strength Estimation from Residual Harmonics

The V/U decision method used in this work is based on the in-
formation in the residual harmonics [7]. The first step in the es-
timation of the residual harmonics is the estimation of the spec-
tral envelope from the speech signal S(t) by auto-regressive
modelling. This is followed by estimation of the residual signal
e(t) by inverse filtering. Then, the residual signal e(t) is seg-
mented using a Hanning window and the amplitude spectrum
E(f) of the short-time signal is calculated. The summation of
the residual harmonics is computed in the frequency range be-
tween the minimum and the maximum F0 from the amplitude
spectrum E(f) as follows:

SRH(f) = E(f) +

K∑
k=2

(
E(k.f)− E((k − 1

2
).f)

)
, (1)

where K is the number of harmonics in the frequency interval.
K is set equal to 5 in this experiment. The frequency maximis-
ing SRH(f) is an estimate of the fundamental frequency, F̂0,
and a frame is classified as voiced if SRH(F̂0) is greater than
a fixed threshold (equal to 0.07).

In this work, the voicing strength parameter vi is calculated
for each speech frame i by performing a normalisation of the
parameter SRH(F̂0), since the voicing strength is usually de-
fined between 0 and 1 (represents the probability of voicing).
The normalisation is performed as follows:

vi =
SRHi(F̂0)

SRHmax(F̂0)
, (2)

where SRHmax is the maximum of SRHi(F̂0) over all
frames.

2.2.2. Calculation of V/U Threshold

An experiment was conducted to obtain the voicing strength
threshold for V/UV classification. First, the reference V/UV
classification was performed using the method described in [6]

Figure 1: Variation of V/U error rate with voicing strength for
clean speech data.

on the utterances of the RMS voice of the CMU ARCTIC cor-
pus [8] of read speech. Then, the V/UV classification was per-
formed using the voicing strength threshold for different values
of this threshold. The optimal voicing strength threshold was
the one that minimised the voicing decision errors. A voiced
error occurs when a reference voiced frame is classified as un-
voiced and an unvoiced error occurs when a reference unvoiced
frame is classified as voiced.

Figure 1 shows the variation of the V/U error rate (number
of V/UV frame errors normalised by the total number of speech
frames) as a function of the voicing strength threshold. The
minimum error rate occurs at 0.38.

2.3. Speech Analysis

The speech parameters estimated during the analysis part of the
HMM-based speech synthesiser are F0, voicing strength, spec-
trum and aperiodicity parameters, with their delta and delta-
delta features. The STRAIGHT method [9] is used to calculate
the spectral envelope and aperiodicity measurements, which are
converted to 24th order MGC and the mean values of the aperi-
odicity measurements over five frequency bands respectively.

2.4. Statistical Modelling

The statistical modelling is performed using the HTS toolkit
version 2.1 [10]. The model topology is a five-state left-to-
right Hidden semi-Markov model (HSMM) with four streams.
HSMM is an extension of HMM for modelling speech duration
explicitly. Each stream is clustered and tied using different de-
cision trees because the speech parameters are assumed to be
independent.

2.5. Speech Synthesis

During synthesis, speech parameters are generated from
HSMM using the maximum likelihood criterion. The V/U deci-
sion on each generated frame is based on the optimal threshold
obtained during analysis (see section 2.2.2) and the generated
voicing strength parameter. Finally, the speech waveform is
generated from the parameters using the STRAIGHT vocoder
[9].

3. Experimental Results
3.1. Systems

Two HMM-based speech synthesisers using continuous F0
modelling were compared in the experiments. One is the pro-
posed HMM-based speech synthesiser which uses a GCI de-
tection method to extract continuous F0 contours during analy-



sis. The other is a baseline system which is similar to the pro-
posed system, but it performs a V/U decision during analysis
(using the method proposed by [7] which was described in Sec-
tion 2.2.1). The F0 values estimated by the baseline system are
equal to those of the proposed system in the voiced regions (cal-
culated using the same GCI detection method). However, the
F0 values of the baseline in the unvoiced regions are obtained
from the voiced F0 values by interpolation using a cubic func-
tion. The statistical modelling and speech synthesis parts were
similar for both systems.

There were three versions of the baseline system that dif-
fered in the voicing threshold used to make the voicing deci-
sion during analysis. The first system used the optimal voic-
ing threshold (0.38), the second used a lower voicing thresh-
old (0.3) and the third used a higher voicing threshold (0.43).
The three thresholds were chosen to study the effect of voic-
ing decision errors on F0 modelling. By increasing the voicing
threshold there is an increase in the number of voiced frames
classified as unvoiced and consequently the negative effect of
F0 interpolation in the baseline system is more prominent.

3.2. Speech Corpus

Two types of speech data were used in the experiments, the
clean and noisy speech. The clean speech was the RMS voice of
CMU ARCTIC corpus [8] of read speech that contains a total
of 1132 sentences. Meanwhile, the noisy speech was obtained
by adding white noise to the clean speech at 0 and 3 dB. Both
speech datasets were divided into a training set composed of
1030 sentences and a test set (the remaining 102 sentences).

The speech dataset with additive noise was used to study the
performance of the HMM-based speech synthesisers trained on
noisy speech data (characterised by higher voiced error rate). It
is expected that the difference in synthesised speech quality be-
tween the two systems is more significant for noisy speech than
for clean speech, because the amount of voicing classification
errors during analysis is expected to increase with the amount
of additive noise for the baseline system, whereas the proposed
system is not affected by this problem.

Figure 2 shows an example of the F0 contour estimated us-
ing the glottal epoch detection method and the interpolated F0
contour estimated using the baseline system, for an utterance of
the noisy speech dataset. The differences between the contours
in the voiced regions (represented by ’V’), which were obtained
from clean speech, suggest that voicing classification errors in
the baseline system will negatively affect F0 modelling. For ex-
ample, the difference is particularly significant around the frame
number 200.

3.3. Synthetic Speech

The values of the voicing strength, spectral and aperiodicity pa-
rameters generated by the two HMM-based speech synthesisers
were equal, since the only difference between the systems was
the method to estimate F0. The spectral and aperiodicity pa-
rameters values used for generating the speech waveforms were
the same as those estimated for clean speech, in order to study
the effect of noise on F0 modelling only. Another reason for
this decision was to avoid the masking effect of noise on the
perception of pitch by the listeners during the experiments.

The speech parameters were generated by HSMMs from
the test sentences by imposing the natural durations of the ut-
terances in the test set. This allowed to compute error measures
between the F0 contours generated by the HMM-based speech
synthesisers and the original contours computed during analy-

Figure 2: An example of F0 contours by direct and interpola-
tion methods for noisy speech at 3 dB. ’V’ represents voiced
regions. Voiced regions were obtained by V/U decision of the
clean utterance.

sis. Speech was synthesised using the proposed and baseline
systems as described in Section 2.5.

3.4. Objective Evaluation

3.4.1. V/UV Error Measurement

The criterion used for the objective evaluation was the Root
Mean Squared Error (RMSE) between the reference F0 esti-
mated using the reference method described in section 2.1 and
the F0 generated by the HMM-based speech synthesisers on the
test set for voiced frames only.

3.4.2. Results

Table 1 shows the results of the objective evaluation for the four
systems trained on clean speech. These results show that the
proposed HMM-based speech synthesiser generates F0 values
that better approximate the natural F0 values as compared with
the systems that use F0 interpolation in unvoiced regions. Fur-
thermore, results show that an increase in the number of voic-
ing decision errors during analysis (due to an increase in the vi

threshold), degrades F0 modelling for the baseline systems.

Table 1: RMSE values obtained for the baseline systems and
the proposed system for clean speech.

System (T = Threshold in Analysis) RMSE
T = 0.3 (lower threshold) 0.1128
T = 0.38 (optimal threshold) 0.1140
T = 0.43 (higher threshold) 0.1152
Proposed approach 0.1120

Table 2 shows the results for noisy speech condition at 0
and 3dB respectively (using the optimal vi threshold). The im-
provement in F0 modelling by the proposed system compared
with the baseline is more significant for the noise condition.
This result is explained by an increase in the number of voiced
frames incorrectly classified as unvoiced due to the addition of
noise, because F0 modelling for these frames is affected by F0
interpolation in the baseline system.

3.5. Subjective Evaluation

3.5.1. Experiment

An ABX choice subjective experiment was conducted to evalu-
ate the perceptual quality of synthetic speech between the base-
line and the proposed systems for noisy speech at 3 dB.



Table 2: RMSE for the baseline systems and the proposed ap-
proach for noisy speech at 0 and 3 dB.

System RMSE
0 dB interpolated 0.1548
0 dB proposed 0.1287
3 dB interpolated 0.1536
3 dB proposed 0.1241

For this experiment only the noisy speech data was used
because the results of the objective evaluation indicated that the
difference between the two systems was more significant for
this data set. However, we plan to extend these experiments to
clean speech because such study could be important for practi-
cal applications in which clean speech is available.

15 sentences were randomly selected from the test set,
whereby each pair of utterances (A/B) consisted of the same
sentence synthesised by the two systems (i.e. the baseline and
proposed systems). The number of participants were 11, made
of 5 native and 6 non-native speakers of English, some of whom
are speech synthesis experts. They were asked to select the sam-
ple (A or B) of each pair that sounded most natural. The third
option ’X’ was chosen by the subjects when they did not per-
ceive any difference between the two samples.

Figure 3: Preference rates between the proposed system and the
baseline system for noisy speech at 3 dB.

3.5.2. Results

Figure 3 shows the preference rates obtained for the baseline
and the proposed systems, as well as the “no preference” rate.
Results show that speech synthesised by the proposed system
sounds more natural than speech synthesised by the system
based on interpolation, in general. This is because the addi-
tion of white noise increased the voicing decision errors in the
baseline system which affected more the quality of the baseline
system. These results are in agreement with those obtained by
objective measurements which indicate that voicing decision er-
rors in the baseline system (which are assumed to increase with
addition of noise) degrade F0 modelling.

4. Conclusions
The speech quality of state-of-the-art HMM-based speech syn-
thesisers is affected by voiced decision errors during speech
analysis. This paper proposes an approach to overcome this
problem which consists of estimating F0 values for voiced and
unvoiced speech without making any voiced/unvoiced classifi-
cation. In this method, F0 is estimated from speech using a
technique for glottal closure instant (GCI) detection that allows
us to directly obtain continuous and approximately smooth F0
contours. The advantage of this method compared with recently
proposed methods which interpolate F0 in unvoiced regions to
obtain continuous F0 values is that it does not depend on the
performance of a voiced/unvoiced classifier.

The HMM-based speech synthesiser using the F0 extraction
technique based on GCI detection was compared against a base-

line system which used a F0 interpolation method. The systems
were evaluated on clean and noisy speech (as training data). The
use of noisy speech was particularly relevant in this study be-
cause it permitted a better comparison between the techniques
for obtaining continuous F0 contours used by the two systems.

An objective experiment showed that the proposed system
produced F0 contours more similar to the natural F0 estimated
during analysis for both clean and noisy speech. A perceptual
experiment also showed that synthetic speech from the system
that used GCIs to estimate F0 sounded perceptually more natu-
ral than speech synthesised with the baseline system, in general.

Extended experiments are required for performing a more
complete evaluation of the proposed system. For example, an
experiment to evaluate the synthetic speech quality of fricatives
and words which are mixtures of voiced and unvoiced speech
segments as these segments are more likely to contain V/U de-
cision errors.
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