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Abstract
Much of our research has focused on the role of the voice
source in the prosody of spoken language, including its linguis-
tic and expressive dimensions. However, as automatic methods,
both for deriving the voice source and for modelling it tend to
lack robustness, we have generally conducted studies on small
amounts of speech data. These studies have involved the use of
labour intensive methods which require pulse-by-pulse manual
fine-tuning. This paper describes a method to model the voice
source automatically by taking into account some of the strate-
gies involved in the manual fine-tuning approach. The method
combines exhaustive search, dynamic programming and opti-
misation methods to overcome the known difficulties of stan-
dard automatic algorithms. A quantitative evaluation revealed
parameter values for the proposed method that were closer to
the reference values, than those obtained using a standard time-
based method.
Index Terms: voice source, LF model, parameterisation,
prosody, dynamic programming.

1. Introduction
A major research strand at the Phonetics and Speech Laboratory
in Trinity College Dublin concerns the role of the voice source
in speech. This research includes both descriptive studies and
the development of more robust analytic tools and methodolo-
gies. One goal is to describe the prosody of the voice, i.e.
how dynamic, temporal variation of the entire voice source (f0
and phonation quality), provides both the underlying linguistic
prosody as well as its expressive dimension. As part of this en-
deavour we have been looking at the source correlates of focus
and deaccentuation [1]. These studies have involved the use
of labour intensive methods which require pulse-by-pulse man-
ual fine-tuning. This paper looks at methodological develop-
ments, drawing on data where utterances were elicited with dif-
ferent focal accentuation patterns.We present a method for voice
source parameterisation that allows us to overcome some of the
difficulties that arise with standard automatic analysis methods.

In order to derive an estimate of the voice source we first
consider the speech production process (in the frequency do-
main) as:

S(f) = G(f)V (f)L(f) (1)

where the spectrum of the speech output, S(f), is the product
of the three factors G(f), V (f) and L(f), where G(f) is the
spectrum of the glottal flow signal (i.e. the voice source spec-
trum), V (f) is the transfer function of the vocal tract, L(f) is
the spectral effect of sound radiation at the lip opening and f

is frequency in Hz. In the time domain, the effect of radiation
at the lips is typically modelled as a first order differentiator, in
which case Eq. (1) can be reduced to:

S(f) = Gdiff (f)V (f) (2)

where Gdiff is the spectrum of the differentiated glottal flow.
Thus, the voice source signal can be obtained through inverse
filtering if the vocal tract transfer function is known. How-
ever, V (f) is not directly observable and as a result this inverse
filtering operation becomes an immensely difficult signal pro-
cessing task. Many automatic algorithms exist for vocal tract
inverse filtering, including: closed-phase methods [2], iterative
and adaptive linear predictive coding based methods [3], and
methods which consider the mixed-phase properties of speech
[4]. However, inverse filtering is still generally considered to be
an unsolved problem.

Due to the frequent problems of automatic algorithms, we
tend to rely on an inverse filtering method which derives initial
estimates using an automatic closed-phase inverse filtering tech-
nique followed by an optimisation procedure involving man-
ual fine-tuning. The user modifies the estimated formant fre-
quencies and bandwidths and utilises both time and frequency
domain displays to obtain maximum formant cancellation [5].
The inverse filtering of the speech signal provides an estimate of
the voice source, which we then characterise by fitting the LF
source model to each individual glottal pulse, thus facilitating
the parameterisation of important features in the source signal.
Again, an automatic algorithm is first used to derive an initial
model fit, which is followed by manual fine-tuning to get an
improved fit. As with the inverse filtering, the user is visually
guided to ensure optimisation in both the time and frequency
domain. Furthermore, the user ensures that subsequent model
pulses do not have unwarranted discontinuities. The manual
fine-tuning involved in both the inverse filtering and the source
parameterisation is extremely labour intensive. However, due to
the limitations of current automatic algorithms, we have found
this approach necessary if a precise description of the voice
source is required.

In this paper we describe an automatic voice source pa-
rameterisation method which attempts to simulate some of the
strategies used by the researcher when applying the visually
guided optimisation of the model fit. To do this, we initially
use an exhaustive search method which provides the N best pa-
rameter settings for the model fit, in terms of both time and
frequency domain criteria. A dynamic programming algorithm
is then used to select the optimal path of parameter values by
considering both the ’target cost’ (i.e. the temporal and spec-
tral fit of the modelled pulses) and the ’transition cost’ (i.e. the
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Figure 1: Example LF model glottal flow (top) and differenti-
ated glottal flow (bottom) pulse.

continuity in the parameter trajectories of the modelled glottal
pulses). To evaluate the new method, we compared its perfor-
mance to that of a standard automatic algorithm based on model
fitting in the time domain.

2. Proposed method
We here describe a method for estimating LF model parameter
values by considering some of the information typically avail-
able to a researcher using a manual fine-tuning approach, i.e.
time domain and frequency domain information, and overall pa-
rameter trajectory. It is assumed that the voice source signal has
been derived beforehand using either an automatic method or
using a manual fine-tuning method (as is used here).

2.1. LF model

Our studies of the voice source have typically involved the use
of the Liljencrants-Fant (LF) model (see Fig. 1) to characterise
the salient voice source characteristics [6]. The LF model is
a 5 parameter model (including f0 and assuming tc = to of
the following pulse) of differentiated glottal flow (i.e. the voice
source). The shape of the LF model can be characterised by the
three R-parameters, calculated as follows:

Rg =
T0

2Tp
(3)

Rk =
te − tp
Tp

(4)

Ra =
Ta

T0
(5)

where Tp is the duration from the time point of glottal opening
to the time point of peak glottal flow amplitude (Fig. 1), te is the
time point of the main excitation and Ta represents the effective
duration of the return phase. A further R-parameter, Rd, was
developed to provide a single parameter which captures most of
the covariation of the LF model parameters [7], and is derived
using:

Rd = 1000 ·
(
UP

EE

)
·
(
f0
110

)
(6)

where UP is the peak amplitude of glottal flow and EE is the
negative amplitude of the main excitation (differentiated glottal
flow). The other R-parameters (Rg, Rk, Ra) can be predicted
from Rd, following the regression analysis described in [7].

Figure 2: Estimated voice source signal (solid line), a synthe-
sised source signal using manually tuned parameters (dashed
line) and a source signal derived using parameters estimated
using the standard automatic time based parameterisation
method (dot-dashed line). The change in the model setting in
the final pulse highlights the potential for inconsistency.

2.2. GCIs, f0 and EE

In order to estimate f0 and EE values from the voice source
signal, we start by estimating the glottal closure instants (GCIs)
using an adapted version of the method described in [8]. A
mean-based signal is derived from the speech signal, s(n), us-
ing:

y(n) =
1

2N + 1

N∑
m=−N

w(m)s(n+m) (7)

where w(m) is a Blackman window [4]. Peaks are then mea-
sured in the signal y(n) and the regions between adjacent posi-
tive peaks are used as search regions. The location of the max-
imum negative amplitude in the voice source signal (differen-
tiated glottal flow) within each search interval is chosen as the
GCI location. The maximum negative amplitude in each search
region is used as EE and f0 is determined by the reciprocal of
the duration between adjacent GCIs.

2.3. Exhaustive search over Rd

Standard automatic time domain approaches to LF model fitting
typically involve estimating initial parameter values by direct
measurements of the voice source pulse and then refining these
estimates using an optimisation procedure. One common prob-
lem with this approach is that direct measurements can often
yield poor initial parameter values. This is frequently due to in-
consistency in marking the point of glottal opening, to. This is
highlighted in Fig. 2 where the final pulse from the time-based
method (dot-dashed line) changes shape considerably from the
previous pulses. Subsequent use of an optimisation algorithm
does little to rectify the problem. To overcome this we pro-
pose the use of an exhaustive search method which involves the
generation and analysis of a wide range of LF-model param-
eter configurations, and saving those configurations that min-
imise a specific error function However, to cover the full range
of possible LF model configurations would be computationally
prohibitive. Therefore, rather than searching all R-parameter
combinations, we simplify the search by varying only Rd. Rd
is changed in steps of 0.1 within the range [0.3, 5].

The search is done by first taking a GCI centred frame of
the voice source signal, U ′g(n), and windowing it using a Han-
ning window. We use a frame length, L, of three local glottal
periods to ensure clear harmonic peaks in the spectrum. We
then measure the amplitude spectrum in dB from the windowed
voice source segment. Harmonic amplitudes are measured in
the spectrum up to a specific maximum frequency (Hmax). In



this work we set Hmax to 3 kHz. Then for each step in the
search an LF model pulse is generated using f0 and EE (pre-
viously calculated) and using Ra, Rk and Rg as derived from
the currentRd value. A synthetic signal is obtained by concate-
nating the LF pulses together and getting a three pulse length
segment again centred on a GCI. The spectrum and harmonics
are measured as above. For eachRd, an error value is measured
between the two harmonic sets using:

spec err =
{
0.5− |cor{hU (m), hLF (m)}|

}
·ws 1 ≤ m ≤ N

(8)
where hU and hLF are the harmonic amplitudes measured from
the voice source signal and the synthesised LF model signal, re-
spectively, N is the number of harmonics of frequencies below
Hmax, cor{.} is the Pearson correlation between the harmon-
ics hU and hLF and ws is a constant weight (see Section 3.2).
A time domain error value is measured using:

time err =
{
0.5− |cor{U ′gLF , U

′g(t)}|
}
· wt (9)

where U ′gLF is a synthesised LF model source signal of length
L and set using the currentRd value, t is the sample range from
the start and end point of the current frame, and wt is a constant
weight. We then consider the Ncand (empirically set to 5) Rd
values that minimise the total error function:

total cost = spec err + time err (10)

2.4. Dynamic programming

We use a dynamic programming method to select the optimal
path of Rd values through the input speech signal. The particu-
lar dynamic programming method used here is described in [9]
and has been used in the popular get f0 pitch tracker.

We define the target cost, d(i, j), as the error value calcu-
lated in the exhaustive search (Eq. 10) for each Rd candidate in
each analysis frame, where 1 ≤ j ≤ Ncand, 1 ≤ i ≤ M and
M is the number of GCIs (i.e. the number of analysis frames).
The transition cost is:

δi,j,k = {0.5− cor {segi,j , segi−1,k}} · wtr (11)

where segi,j refers to a single generated LF model pulse using
the R-parameters predicted from the j-thRd candidate at frame
i and segi−1,k refers to an LF pulse generated using the previ-
ously chosen Rd value. This transition cost is based on the ob-
servation that, like the vocal tract, voice source pulses should be
reasonably slowly varying over a short timespan (e.g., 20 ms).
This may not be the case for certain voice qualities (e.g., harsh
and creaky voice). These voice qualities are not contained in
the speech data used in the present work. An objective function
is, hence, defined for a given frame i:

Di,j = di,j +min
k∈N
{Di−1,k + δi,j,k}, 1 ≤ j ≤ Ncand (12)

which is initialised with: Do,j = 0, 1 ≤ j ≤ Ncand. The
vector q(i) is used to save the index of the optimalRd (obtained
by argmin

j
(Di,j) for 1 ≤ i ≤M ).

2.5. Optimisation

Although the Rd parameter can be used to characterise much
of the glottal pulse types arising in breathy to tense voice qual-
ities, it is likely that some glottal pulses will exist outside the
constraints of Rd. Furthermore, it is not our intention to reduce
the degrees of freedom of the model. To overcome this we re-
fine parameter values using an optimisation method. For each

analysis frame we derive Ra, Rk and Rg from the Rd value,
selected from the dynamic programming method. We then use
a simplex-based method [10], which allows multi-variable opti-
misation. The 3 R-parameters are allowed to vary to minimise
the same error function shown in Eq. (10).

3. Evaluation
3.1. Speech data

The speech data from 6 male speakers were used in our eval-
uation. Each speaker uttered the sentence WE WERE aWAY a
YEAR ago, with narrow focus on each of the potentially ac-
cented syllables (WE, WERE, -WAY and YEAR) with both rising
and falling pitch patterns. A broad focus and a deaccented ren-
dition of the utterance were also recorded. Overall there were
10 sentences per speaker with the exception of one, from whom
the 4 rising pitch utterances were not elicited. The speech sam-
ples for this speaker (6 utterances) were used for weight setting
(see Section 3.2) and were subsequently excluded from the test-
ing, leaving 50 utterances for evaluation.

Audio was captured in a semi-anechoic recording studio us-
ing high quality recording equipment (a B & K 4191 free-field
microphone and a B & K 7749 pre-amplifier) and was digitised
at 44.1 kHz (using a LYNX-two sound card), which was then
downsampled to 10 kHz. The DC-component was removed us-
ing an 8th order high pass Butterworth filter with a cut-on fre-
quency of 60 Hz. Filtering was carried out forwards and back-
wards to maintain the original phase spectrum of the signal.

All speech signals were inverse filtered by the second au-
thor using the manual fine-tuning software [5], where the user
adjusts the initial formant frequencies and bandwidths for each
analysis frame and uses time and frequency domain displays to
achieve full formant cancellation.

3.2. Weight setting

In our evaluation, the proposed method is configured as de-
scribed in Section 2. However, the weights ws, wt and wtr

need to be set. The setting of these weights is crucial for mod-
elling the relative importance of different types of information
used in the manual fine-tuning approach and, hence, they need
to be set carefully.

Using the speech data from one speaker (see Section 3.1)
an exhaustive search was conducted to test all combinations of
the three weights in the range [0, 1] with a step of 0.1 (1331
possible combinations). Note that all three cost elements were
designed to lie within the range [-0.5, 0.5]. For each combina-
tion, analysis was carried out on the 6 sentences and a synthetic
voice source signal was generated using the extracted parameter
values. This was compared to the voice source signal, generated
using the reference parameter values, by calculating the Pearson
correlation coefficient. The combination with the highest cor-
relation score (averaged across the 6 sentences) was kept as the
setting for the weights. The analysis resulted in the weights 0.6,
1 and 0.3 for ws, wt and wtr respectively. This suggests that
the manually fine-tuning user favours the time domain infor-
mation for fitting the model. However frequency domain and
transitioning information also carry importance.

3.3. Comparison algorithm

We use a standard time based LF model fitting algorithm as a
baseline method in our evaluations. The algorithm is described
in [11], and involves first estimating LF model parameters by



direct estimates from each voice source pulse. A multi-variable
optimisation method [10] is then used to refine the fit by min-
imising a sum of squares error function.

3.4. Reference values and evaluation metrics

Objective evaluation of voice source parameterisation is a dif-
ficult task. Some researchers tend to use synthetic stimuli to
provide a quantitative evaluation with known reference parame-
ter values. However these signals may lack the very details that
cause trouble for voice source parameterisation (e.g., the pres-
ence of aspiration noise). Others use EGG signals for obtaining
reference values. It is not generally feasible, however, to ob-
tain a full set of voice source parameter values from the EGG
signal. In the present study we used parameter values obtained
using a fine-tuning method [5] as our reference values. With
an estimated voice source signal, initial LF model settings were
derived for each glottal pulse. The second author, who is highly
experienced with this type of analysis, then used our manual
fine-tuning technique in order to ensure optimal fitting of the
LF model to each of glottal pulses of the voice source signal.

Using these reference values, the performance of the pro-
posed method was evaluated by comparing it to the performance
of the baseline method (described in Section 3.3). We consid-
ered the three R-parameters, Rg, Rk and Ra, and used the rel-
ative error as an evaluation metric:

Relative error =
|paramref − paramest|

paramref
(13)

where paramref are the reference parameter values and
paramest are the parameter values as estimated by the auto-
matic algorithms. We also calculated the Pearson correlation
score for each utterance between the generated source signal
using the reference values and the one generated using the esti-
mated parameter values. This metric would be an indicator of
the overall similarity between the automatic model fitting and
that of our reference. Independent Student t-tests were used,
separately for each parameter, to compare distributions of rela-
tive error scores across the two methods.

4. Results

The distributions of relative error scores for the three parame-
ters are presented in Fig. 3. The proposed method produced
significantly lower relative error scores for Rg [t = -3.7192, p
< 0.001], Rk [t = -2.6885, p < 0.01] and Ra [t = -7.9259, p <
0.01]. Also, for Rg and Rk there is clearly lower variance in
the error scores for the proposed method. This is likely due to
the known difficulty of consistently marking the point of glottal
opening, to, in the standard method (as shown in Fig. 2), which
would consequently affect Rg and Rk values. Ra, on the other
hand, is not affected by the position of to and as a result both
methods display comparably low variance.

For the correlation scores comparing test signals with refer-
ence synthetic source signals, the proposed method produced a
higher mean correlation score (R = 0.890) compared with the
standard method (R = 0.795), and this difference was found
to be significant [t = 3.2576, p < 0.01]. This implies that the
voice source modelling of the proposed method is consistently
more similar to the manual modelling method, than the standard
method.
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Figure 3: Distributions of relative error scores for Rg, Rk and
Ra, for the proposed method (left box in each panel) and the
time-based method (right box), for utterances of 5 male speak-
ers.

5. Conclusion and future work
This paper presents a new method for automatic voice source
parameterisation which attempts to simulate some of the op-
timisation strategies used when the parameterisation is carried
out manually and is guided by both time and frequency domain
information. Results showed that voice source parameter data
produced by our new method were more similar to the refer-
ence data than those of the standard baseline method. Future
work will involve incorporating this method into our linguistic
studies on the use of the voice source. Furthermore, we hope to
apply a similar approach in the development of better automatic
inverse filtering.
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