
Framework For Consistent Speech Databases

Sören Wittenberg∗, Rüdiger Hoffmann∗

∗Institute of Acoustics and Speech Communication, Technische Universität Dresden , Germany
Soeren.Wittenberg@tu-dresden.de, Ruediger.Hoffmann@tu-dresden.de

Abstract
The introduced speech processing framework creates phonet-
ically and prosodically annotated speech databases. It pro-
vides with structured data files in eXtensible Markup Language
format. Those files include all available information about a
recorded utterance inclusively the speech signal. A Document
Type Definition (DTD) describes the data structure and provides
with the possibilty of automatically data structure validation.
That ensures right data reading by human and interoperability
between the used speech processing tools. A user can browse
the speech databases with a normal web browser. The browser
has to support XSL transformation, ECMA script and Scalable
Vector Graphics to visualize the content. If the user requests
a utterance, the browser gets the requested file with all avail-
able information of the corresponding utterance. The advantage
of that is that the user obtain same data as a speech process-
ing tool when it uses the underlying file server. The navigation
through different speech layers is like browsing a web page.
The user clicks on a part he wants to look at and a file embedded
ECMA script filters the data and modifies the screen. The script
is part of the XSL transformation file. It allows also elementary
editing of the utterance content like changing word boundaries
by moving the corresponding boundary mark. The changes are
committed to the web server, that can handle further processing
like integration into a subversion system. Because the whole
speech database contents are strings, a standard search engine
can be used for database searching. Searching for a phoneme
under special context yields to all avialable phonemes with all
information of them and also the speech signal.
Index Terms: speech database, framework, structured data

1. Introduction
Speech database improvement is very important to increase the
quality, usability and performance of a database. Development
of new speech annotation algorithms make it necessary to re-
place parts of an existing database by new, and hopefully more
precise, annotations. A speech database contains different in-
formation layers like a signal, phonetic, morphemic, prosodic,
syntactic and an orthographic layer. Depending on the database
implementation goal, the layer contents are stored in different
files as shown in the block diagram 1 of our old speech frame-
work [1][2]. It is subdivided into four blocks. While data col-
lection is providing the raw material for the annotation, the pho-
netic and linguistic processing blocks generate the required sig-
nal segmentation, transcription and prosodic annotation. The
information combination step collects all data and provides with
different target data files. The resulting speech database quality
is very good, but the access to the different speech informa-
tion layers is poor. Handling with different files can provide
with advantages in the further processing cycle, but when the
data format differs from file to file it becomes difficult to inter-

pret the data right. Furthermore, the user has to know, which
data can be processed which way. Speech, as well as music, is
highly structured and that implies the usage of a structured data
definition to describe the speech layers. A widely used tech-
nique to describe structured data is using eXtensible Markup
Languages. The advantages of XML are a precise definition of
the data structure, human readability, ability of automated struc-
ture validation and processing. Because of these advantages, it
was the aim to modify the speech processing framework, the
structure of the created speech database and also the access to
the speech database. To obtain the given aims, the framework
provides with only one structured data file per recorded utter-
ance.

Figure 1: Typically structure of a framework for high quality
speech databases creating (according [2]).

2. Speech Processing Framework
Our speech processing framework was first established at [1].
It rests upon the system which creates the TC-STAR database
[2] and includes all necessary algorithms, procedures und rule-
formulated expert knowledge for creating an annotated speech
database. The framework is a modular system corresponding
to speech layers. The replacement of a module within a layer is
also possible like replacing the whole layer. Because it was not
the aim to use only proprietary development, the integration
of foreign components became a challenge we solved by
using a wrapper application, that transforms the frameworks
XML based data exchange format into an application in- and
output data format. Furthermore, we decide to change the

parallel framework design presented in figure 1 into to a serial
design (figure 2). The loss of parallel layer computing is
being replaced by the weightier advantage of a more reliable
interoperability between the used modules. The necessary
information combination module was eliminated and only the
data validation module get place at the new system. Foreign
modules, which do not support the used data exchange format,
will be encapsulated into the wrapper application. That ensure
the interoperability to the foreign modules. Interoperability
between own modules is ensured by an obvious data descrip-
tion based on Document Type Description (DTD). That will
get speech databases with a consistent structure and formal
regularity, that can be automatically validated.

Figure 2: Serial structure of the more flexible speech processing
framework.

In the area of speech signal processing, it is generally
accepted that markup languages provide with a lot of advan-
tages. There are many frameworks, annotation and processing
systems are able to processes structured data. There are also
a lot of recommendations from the W3C describing different
speech processing tasks. The most noted speech processing
markup languages are Voice Extensible Markup Language
(VoiceXML), Speech Synthesis Markup Language (SSML)
and Pronunciation Lexicon Specification (PLS). Speech
Recognition Grammar Specification (SRGS) and Semantic
Interpretation for Speech Recognition (SISR) are two other
examples, which are less used. But the recommendations are
not granular enough for most applications. One example is
the well-known TTS system Mary [7]. Inside the system there
is a XML based data representation format, which is called
MaryXML. This ML is extented by many entries required
by the TTS system. These entries are not part of the Speech
Synthesis ML.

Our speech processing framework extends and combines
the known speech processing markup languages also. This
ensures a high granularity speech data annotation whilst the
abidance of W3C recommendations enables an integration
toward foreign tools. Speech data annotation is divided into
two description layers. First layer uses SSML to make a coarse
orthographic and prosodic description of the whole utterance.
Pauses, accents and phrase boundaries can be marked by tags
like <break time=”220ms”> to denote a 220 ms long speech
pause. This layer is redundant and can be generated from the
second layer, but the abidance of the SSML recommendation
ensures the speech synthesis by a SSML conformal TTS
system.

The second layer provides with a more accurate speech
data description respectively transcription. The following
listing shows a part of the speech database entry for the
utterance Parliament budget ought not The first layer is
denoted by the tag <speak> while the second part is the rest of
the listing.

Listing 1: Part of a speech database file.
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<prophano v e r s i o n =” 1 . 0 ” xml: lang =” en−GB” . . .>

<speak v e r s i o n =” 1 . 1 ” xml: lang =” en−GB” . . .>
<l e x i c o n u r i =” f i l e : / / / l e x i c o n l a u r a . p l s ” . . . />
<v o i c e name=” Laura ” ge nd e r =” fe m a l e ” age=” 32 ”>

<l ookup r e f =” l e x i c o n l a u r a ”>
<p>

<s>
<emphas i s l e v e l =” modera t e ”>

P a r l i a m e n t
</ emphas i s>
bu dg e t
<b r e a k t ime =” 220ms” />
ough t
. . .

</ s>
</ p>

</ l ookup>
</ v o i c e>

</ speak>
<v o i c e name=” Laura ” ge nd e r =” fe m a l e ” age=” 32 ”>

<p>
<s>

<p r o s e m p h a s i s l e v e l =” modera t e ”>
<w s t a r t =” 0 . 0 6 s ” end=” 0 . 6 0 s ”>

<o r t h>P a r l i a m e n t</ o r t h>
<phon>

<s y l l a b l e s t a r t =” 0 . 0 6 s ” end=” 0 . 4 2 s ”>
<phoneme s t a r t =” 0 . 0 6 s ” end=” 0 . 1 5 s ”>

p
<a u d i o e n c o d i n g =” b a s e 6 4 B i n a r y ”> . . .

</ phoneme>
<phoneme s t a r t =” 0 . 1 5 s ” end=” 0 . 4 2 s ”>

A:
<a u d i o e n c o d i n g =” b a s e 6 4 B i n a r y ”> . . .

</ phoneme>
</ s y l l a b e>

. . .
</ phon>

</w>
</ p r o s>
<p r o s b r e a k t i m e =” 220ms”>

<a u d i o e n c o d i n g =”UTF−8”> . . . </ a u d i o>
</ p r o s>
<w s t a r t =” 0 . 6 0 s ” end=” 1 . 1 4 s ”>

<o r t h>bu dg e t</ o r t h>
. . .

</ p rophano>

First layer does not describe the utterance phonetically.
Therefore, SSML defines a entry <lexicon> to reference to
external pronunciation lexicons. A lexicon entry <lexeme>
contains the pronunciation of a word including pronunciation
variants inside the <phoneme> tags. The structure of the
lexicon is defined by the W3C recommendation Pronunciation
Lexicon Specification. The PL-Specification claims the use of a
IPA alphabet, but we use eXtended Speech Assessment Methods
Phonetic Alphabet [3] to obtain an easier ASCII presentation
and processing. Following listing shows one lexicon entry. The
second layer does not need this lexicon, because it includes
the phonetically description. That is also the reason a special
utterance lexicon can be created by the second layer and used
by the first one.

Listing 2: A lexicon entry
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<l e x i c o n v e r s i o n =” 1 . 0 ” a l p h a b e t =”x−sampa ” . . .>

<lexeme>
<grapheme>l e g</ grapheme>
<phoneme>l e g</ phoneme>

</ lexeme>
</ l e x i c o n>

2.1. Audio Signal

The aim of the speech processing framework is to provide
with only one structured data file per recorded speech signal.

Music Noise
sample frequency [kS/s] 44.1 48
Bit per sample 16 16
length [min.sec] 5.25 5.00
samples 14,314,752 14,400,000
MSWave file size [MB] 54.6 27.4
UTF-8 size [MB] 167.4 94.6
UTF-8 size gzip [MB] 73.8 37.1

Table 1: Comparison of the file size when storing a music signal
(-12 dBFS RMS, two channels) and white noise (-8 dBFS RMS,
one channel) as gzip compressed UTF-8 files.

Therefore, audio samples are integrated into the XML file.
The element <audio channel=..> marks the audio signal of
different audio channels. This entry is always placed inside
the innermost description level. If the innermost level is the
phoneme, than it is placed inside the entry <phoneme>. If
the innermost level is the syllable, than it is placed inside
the entry <syllable> and so one. The reconstruction of the
whole audio signal is made by collecting all entries <audio>
according their position inside the document and concatenate
all together. Audio samples can be stored as base64Binary
data, but it should be prefered to store each sample as plain
UTF-8 strings. The resulting storage amount will be reduced
using a gzip compression over the whole document. Table 1
give an example when storing two different signals as UTF-8
and as gzip compressed UTF-8 strings.

2.2. Database Access

The speech database is organized in folders and files. Each file
contains one speech recording inclusive all descriptions and in-
formation about the recording that are available. The XML files
are compressed by using gzip. The uncompressed files are en-
coded with UTF-8. Access to the database is available via file
or HTTP server as depict at figure 3. User restricted access
via HTTP server is gainful because the server communicates
the content encoding type (gzip) to the requesting client. If the
client is a web browser, it will uncompress the file and pro-
cesses the including content without futher processing steps by
the user. That mechanism ensures a world wide high perform-
ing database access.

3. Monitoring, Visualization and Editing
3.1. Self-Monitoring

A validation module ensures the formal correctness, data in-
tegrity of a given XML file by using a global defined Document
Type Definition. The DTD is a special file that determines
the formal structure of a XML document and consists of
declarations for elements (<!ELEMENT ... >) and element
attributes (<!ATTLIST ...>). The element declaration defines
the element name and the content type. The content type is
given by round brackets and could be other elements (childs),
a sequence of elements or strings. Element attributes can be
defined by the ATTLIST tag. The occurence of an attribute
is denoted by #REQUIRED or #IMPLIED and the occurence
of childs by + (one or more times), * (any number of times
including zero) and ? (zero or one times). Listing 3 shows
a part of a DTD, that specifies the element <phoneme> that

Figure 3: Main concept of speech database access.

can have an child element <audio> and must has a string
(phoneme symbol). The required attributes are start and end.
Both are of type character data. The third attribute is the hash
value that is only optional.

Listing 3: Part of a DTD
<!ELEMENT phoneme (#CDATA, a u d i o ?)>
<!ELEMENT a u d i o (#CDATA)>
<!ATTLIST phoneme s t a r t CDATA #REQUIRED

end CDATA #REQUIRED
hash CDATA #IMPLIED>

<!ATTLIST a u d i o e n c o d i n g CDATA #REQUIRED
c h a n n e l CDATA #REQUIRED
hash CDATA #IMPLIED>

Creating a DTD is easy when using the class diagramm
approach of the Unified Modeling Language (UML) as a
visual structuring facility. The transformation of an UML
representation into a DTD is made rule-based [4].

After one component has been processed a XML file, the
validation module runs and validates the formal structure of the
document. The module also checks and stores a hash value that
is made by the Adler-32 checksum algorithm for major blocks.
A major block, for instance a sentence with all child elements,
can be validate calculating the CRC and comparing with the
stored one. If there is no different, the module will not check
the inner block structure, otherwhile it validates the block struc-
ture. The Adler-32 checksum algorithm is used because of its
simplicity and the good performance.

3.2. Visualization

The concept of the framework respectively a finished database
is click and see. The user has not known anything about the
available data of a recorded utterance. He will click on a file
and he gets all available data inside one structured data file.
But against others (e.q. [5] or [6]), we decided to transform
the content client side. If the user wants to store and process
the requested utterance by his own tools, he can do it. The
visualization of the file content can be made by a normal web
browser. Todays browsers are powerful enough to transform
the content of the XML file into a text and also a graphically
representation like it is needed to visualize the audio signal

with all annotation marks. The eXtensible Stylesheet Language
Transformation (XSLT) is part of the markup language family
eXtensible Stylesheet Language (XSL). It can be used to trans-
form an XML document into a holy different target language
structure like xHTML, SVG, VoiceXML, ASCII, PDF and
others more. The transformation is made by a XSLT-processor.
Such a processor is part of nearly all current desktop web
browsers. In our case, the browser transforms the structured
content into xHTML code with embedded SVG and displays
the result on screen. The transformation rules are defined by a
XSL transformation file. To increase the capabilty of the XSL
transformations the so called XPath technology can be used to
filter data from the XML document while transforming. These
become imported when only parts of the utterance should be
extracted (e.q. all phonems ’a’ or all realizations of the word
’is’).

The result of a transformation is shown in figure 5. The area
I shows information about the audio signal. Area II is the text
representation of the audio signal and area III the correspondig
graphically representation as a Scalable Vector Graphic. The
figure marked by IV is a zoom into to signal using the zoom
functionality of the browser.

Figure 4: Visualization of an XML file in the web browser us-
ing xHTMl and embedded SVG. (I..data type of audio samples;
II..audio signal as strings, can be hide; III..audio signal as SVG;
IV..zoom in using browser zoom capability)

3.3. Editing

Manually editing an automatically generated speech recording
annotation should be made by high quality annotation tools.
But it is also possible to fix poor annotations while browsing
the database by a web browser. All annotation marks inside a
SVG are objects that can be removed or move along the time
axis. It allows an elementary editing of the utterance content
like changing word boundaries by moving the corresponding
boundary mark. Using interactive SVG in combination with
the web server made it possible to transmit the changes to the
database. The changes are committed to web server, that will

Figure 5: Visualization and editing of the annotation layer di-
rectly in the Browser with interactive SVG

handle further processing like integration into a subversion sys-
tem. For further editing it is possible to integrate java applets.

4. Conclusions
The introduced speech processing framework creates phoneti-
cally and prosodically annotated speech databases. It uses struc-
tured XML files and a Document Type Definition (DTD) to
ensure a valid data structure and interoperability between the
used speech processing tools. All information layers of a utter-
ance are collected in one data file that results in a very compact
speech database. The visualization of the database is made by
a normal web browser and the navigation through the differ-
ent layers is like browsing a web page. If the user requests a
utterance, the browser gets the requested file with all available
information of the corresponding utterance. If a speech process-
ing tool requests for the utterance at the underlying file server,
the tool gets the same file as the browser. The uniform access is
indispensable to get a consistent speech database.

5. References
[1] Wittenberg, S. and Jokisch, O. “Das Prosodisch-Phonetische An-

notationssystem PROPHANO”, In Proc. of 21st conference on
Electronic Speech Signal Processing, pp. 71–76, Berlin, Germany,
2010.

[2] Jokisch O.; Wittenberg S.; Cuevas M.; Hussein H.; Strecha G.;
Ding H.; Hoffmann R., “Towards an Automatic Process Chain for
the Speech Corpora Annotation”, Proc. SPECOM 2007, pp. 869-
876, Moscow, October 2007.

[3] Wells J.C., “SAMPA computer readable phonetic alphabet”,
Handbook of Standards and Resources for Spoken Language Sys-
tems, Part IV, section B, Mouton de Gruyter, 1997.

[4] Kudrass, T. and Krumbein, T., “Rule-Based Generation of XML
DTDs from UML Class Diagrams”, Advances in Databases and
Information Systems, vol. 2798, pp. 339–354, 2003.

[5] Dipper, S. and Goetze M., “Accessing Heterogeneous Linguistic
Data Generic XML-based Representation and Flexible Visual-
ization”, In Proc. of 2nd Language and Technology Conference:
Human Language Technologies as a Challenge for Computer Sci-
ence and Linguistics, pp. 206–210, Poznan, Poland, 2005.

[6] Milde, J.T. and Gut, U., “A Prosodic Corpus of Non-Native
Speech”, In Proc. of Speech Prosody 2002 Conference, pp. 503–
506, 2002.

[7] Schroeder, M. and Trouvain, J., “The German Text-to-Speech
Synthesis System MARY: A Tool for Research, Development and
Teaching”, International Journal of Speech Technology, 6, pp.
365-377,2003.

