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Abstract
It is difficult to demonstrate the effectiveness of prosodic

features in automatic word recognition. Recently, we applied
the suprasegmental concept and proposed an extra layer of
acoustic modeling with syllables. Nevertheless, there is a mis-
match between the syllable and the word units and that makes
subsequent steps after acoustic modeling difficult. In this study,
we explore English word segmentation without a pronunciation
dictionary. The algorithm is based on phonotactic and pseudo-
syllable information trained on a direct model with conditional
random fields. An F-measure of 0.69 is attained. This result
opens the possibility of automatic word recognition with the
extra layer of syllable modeling.
Index Terms: automatic word recognition, word segmentation,
pseudosyllable

1. Introduction
Speech prosody provides valuable information to automatic
speech processing tasks. For instance, in the task of speaker and
language identification, characteristics of the target speaker or
language classes can be modeled with prosodic features [1][2].
The suprasegmental features are also useful by providing ad-
ditional information on structures, semantics or pragmatics be-
yond the word level. Examples include disfluency detection, as
well as sentence and topic segmentation [3].

While prosodic features are useful in generating idiosyn-
cratic properties or high-level structural information, it is dif-
ficult to demonstrate the effectiveness of prosodic features in
another important task - word recognition. In previous ap-
proaches, prosodic features were used to directly expand the
feature space, or they were incorporated into backend processes
like hypothesis re-ranking. Only some improvements could be
obtained [3].

In our recent study, a different approach to make use of
prosodic information has been proposed. Instead of expanding
the feature space with prosodic features such as F0 and dura-
tion, we kept the cepstral feature space unchanged. Decoded
phones were considered in blocks of syllables, which formed
an extra layer on top of the phone layer. The unit of syllable is a
suprasegmental unit normally used for extracting prosodic fea-
tures. It was rarely considered in automatic speech processing
tasks. Nevertheless, by this new hierarchy, pronunciation varia-
tion could be effectively modeled. An increase in phone recog-
nition correctness with the TIMIT corpus from 61% to 73% was
observed [4].

By introducing an extra syllable layer in automatic word
recognition, we have to tackle the mismatch between syllable

This project is partially funded by National Institute of Information
and Communications Technology (NICT), Japan.

and word boundaries. This is illustrated in Figure 1. The first
syllable “hh-iy-hh” spans across two words “He has”, while the
second syllable “aa-z” is a sub-word unit. Modeling pronunci-
ation variation within a syllable was shown to give more robust
acoustic model than modeling within a word [4]. Nevertheless,
if we try to model pronunciation variation in a cross-word syl-
lable simply by adding alternative pronunciations in the dictio-
nary, we will run into troubles because one cross-word syllable
may covers hundreds or even thousands of word pairs.

In this paper, we will conduct a preliminary study to inves-
tigate whether English word segmentation could be done auto-
matically without using a pronunciation dictionary. Phonotactic
and the syllable boundary information will be exploited. The
problem of English word segmentation is formulated in Sec-
tion 2. Conditional random fields, a direct modeling approach,
will be used to tackle the word segmentation problem. Exper-
imental details and results will be introduced in Section 3 and
4. Implications of the results, the importance of syllables and
future work will be discussed in Section 5 and 6.
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Figure 1: The mismatch of syllable and word segmentation. Syl-
lable segmentation is generated from the sonority-band inten-
sity profile.

2. Pseudosyllable to word conversion
2.1. Pseudosyllable

There is no conventional definition on syllable. Such a unit is
difficult to extract. In our study, we use acoustic cues exclu-
sively to extract a suprasegmental unit known as pseudosylla-
ble. We implement an algorithm of syllabification using the
temporal envelope of speech [4]. The algorithm is based on the



assumption that a hill-shaped profile on the temporal envelope
signifies the full trajectory of the pseudosyllable from onset, nu-
cleus to offset.

In the extraction algorithm, temporal envelope is repre-
sented by the sonorant-band intensity profile. Acoustic signal
first goes through a band-pass filter, set between 300Hz and
1000Hz, to yield sonorant-band signal. Temporal envelope is
obtained by waveform rectification and low-pass filtering to the
sonorant-band signal. A moving window is applied to the tem-
poral envelope and all local peaks are identified. Figure 1 illus-
trates the temporal envelope with the curved line at the bottom,
on which the crosses mark the detected local peaks. The local
peaks indicate the location of maximum energy of the vocalic
portion of speech and are regarded as the nuclei of the pseudo-
syllables. The boundaries of pseudosyllables are determined by
the valleys of the temporal envelope, and made aligned with the
nearest phone boundaries according to the phone segmentation
output. Details of the syllabification algorithm is explained in
[4].

In this preliminary study on pseudosyllable and word, we
used the forced alignments instead of the phone recognition re-
sults to find pseudosyllable boundaries. Hence, syllables and
words can be interpreted as phone sequence segmentation with
different criteria. For example, the first syllable “hh-iy-hh” con-
sists of three phones while the first word “He” consists of two
phones only.

2.2. Problem formulation

In conventional English word recognition approaches, a pro-
nunciation dictionary is used to generate deterministic map-
pings between the decoded phone sequence and words. As ex-
plained in Section 1, this does not work for our approach with
the extra layer of pseudosyllable. We refer to word segmenta-
tion for languages like Chinese, where word boundaries are not
explicitly labeled in orthography [5]. Conditional random fields
(CRF) are shown to be a robust approach for this task [5][6].

Under this approach, word segmentation is modeled as a
labeling task. Consider two random variables X and Y which
respectively range over a phone sequence and a label sequence.
X = (X1,X2, ...,XN ) represents N phones. Segmentation is
realized by an assignment of labels Y = (Y1,Y2, ...,YN ) to
each phone. The label is binary valued, having the value 1 when
the phone is on the word offset and 0 otherwise.

The conditional random field is an undirected graphical
model globally conditioned on the phone sequences X [7]. The
graphical model allows arbitrary structures of the graph which
represents label sequences Y. Y is often assumed to be a chain,
and the joint distribution over a particular label sequence Y = y
given a phone sequence X = x is described by,

PΛ(y|x) =
1

Zx
exp

(
N∑

n=1

∑
k

λkfk(yn−1, yn, x)

)
(1)

Literally, Eq.(1) says that the posterior probability of y con-
ditioned on x is calculated with a log-linear model, where the
terms fk() are summed together with weight λk. Zx is a nor-
malization term that guarantees different label sequences y have
their posterior probability summed to 1. fk() are known as fea-
ture function, it specifies a relationship between x and y and is
usually binary-valued. For instance, a feature function fk=k1()
might be true if the phone Xn is a voiced bilabial plosive (i.e.
/b/) and Yn = 1 (i.e. at word offset). Another feature fk=k2()

might be true if the phone Xn is at the pseudosyllable bound-
ary and Yn = 1. By adopting different criteria, a large number
of feature functions will be available to model the relationship
between X and Y.

In the model training process, the values of λk for all
feature functions are trained to maximize the conditional log-
likelihood of a given training set. With the trained parameters,
dynamic programming finds the most likely sequence of Y to
accomplish the word segmentation process.

3. Experiment
The data used is from the TIMIT database. For the training set,
3696 utterances which cover 4910 dictionary words are used.
There are a total of 29985 word tokens. In other words, each
utterance is about eight words long. For the testing set, there are
192 utterances which cover 902 dictionary words. Among the
1565 word tokens, 1146 also appear in the training set. Never-
theless, training and testing utterances are mutually exclusive.
There is no training-testing utterance pair with identical word
composition. Only 234 of the 1373 word bigrams in the test set
appear in the training set. The testing set is considered to be an
open set.

Phonotactic and pseudosyllable information are extracted
for conditional random field (CRF) modeling. Phone transcrip-
tions are directly taken from the corpus. Pseudosyllables are
found by the algorithm described in Section 2.1. Feature func-
tions are established and CRF models are trained to relate these
information to word segmentation. For testing, the location of
word boundaries given the phone transcriptions and pseudosyl-
lable information is determined. In the following, we will de-
scribe how feature functions are used to model the two types of
information about the phonotactics and the pseudosyllables in
different orders.

3.1. Phonotactic information

Four settings of CRF models are trained with their feature func-
tions modeling the phonotactic information in different orders.

P(0) Transcription of the current phone
P(−1...0) Transcription of the current phone, the previous phone,

and their interactions
P(−1...1) Transcription of the current phone, the previous phone,

the next phone and their interactions
P(−2...1) Transcription of the current phone, two previous phones,

the next phone and their interactions

For the P(0) setting, one boolean-valued feature function
is specified for every unigram phone and its word offset label
yn. Recall the example given in Section 2.2, an example fea-
ture function specifies the relationship between a voiced bil-
abial plosive phone (i.e. /b/) and a positive word offset label
(i.e. the phone is at the word offset). For the English phone
inventory with 39 phones and two output labels (Yn = 1 and
Yn = 0), there will be 39 × 2 = 76 feature functions. The
P(−1...0) setting uses feature functions to specify the current
phone, the previous phone, as well as their interactions. Con-
sidering also the two output labels, the total number of feature
functions will be (39 + 39 + 392) × 2 = 3198 theoretically.
In practice, the specified features may not occur in the training
data set, or the feature functions could be pruned by the training
algorithm. The actual number of feature functions will thus be
smaller. P(−1...1) considers the previous, the current, the next



phones and their interactions. P(−2...1) extends to two previous
phones.

3.2. Pseudosyllable information

Apart from the phonotactic information, pseudosyllable infor-
mation will also be used. With the pseudosyllable boundaries
detected as described in Section 2.1, two boolean variables Son

and Soff track whether the phone is the first and the last phone of
a pseudosyllable respectively. Similar to the feature functions
for phonotactics, pseudosyllable information with different or-
ders are modeled.

S(0) Son and Soff of the current phone
S(−1...0) Son of the current phone, the previous phone,

and their interactions, plus Soff of the current phone
S(−1...1) Son of the current phone, the previous phone,

and their interactions, plus Soff of the current phone,
the next phone and their interactions

S(−2...1) Son of the current phone, two previous phones,
and their interactions, plus Soff of the current phone,
the next phone and their interactions

4. Results
Word segmentation will be treated as a task of detecting word
offset phones (Yn = 1). Similar to a typical tagging task, the
result is evaluated with precision, recall and F-measure. Preci-
sion measures the proportion of correctly detected phones out of
all detected word offset phones. Recall measures the proportion
of correctly detected phones out of the true set of word offset
phones with Yn = 1. In other words, precision measures false
positive and recall measures false negative. F-measure sum-
maries precision and recall, with the following equation,

F = 2× precision× recall
precision + recall

(2)

We first compare CRF settings with phonotactic informa-
tion in different orders. Then, the CRF models are supple-
mented with pseudosyllable information.
4.1. Segmentation with phonotactic information

Figure 2 illustrates the F-measure for using different CRF set-
tings. The four thicker black bars correspond to the F-measure
with four CRF settings P(0), P(−1...0), P(−1...1) and P(−2...1)

where only phonotactic information is used. Table 1 included
also precision and recall of these four settings.

With only the information of the current phone identity and
some transition probabilities, the F-measure when using P(0)

is 0.40. As the phone identity of the previous and the next
phone are added to the model (in P(−1...0) and P(−1...1)), preci-
sion and recall increase. Nevertheless, when information of one
more previous phone is introduced, recall and F-measure drop.
This is believed to be a data sparsity problem. In P(−2...1), the
number of feature function is very large because up to quadri-
gram information is modeled. Most of the quadrigrams cannot
be found in the training data and the robustness of the trained
model is affected.

4.2. Addition of pseudosyllable information

Except for P(−2...1) which suffers from data sparsity, we in-
troduce pseudosyllable information to the other three CRF set-
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Figure 2: F-measure with different CRF settings

Table 1: Performance with different CRF settings modeling
phonotactic information

P(0) P(−1...0) P(−1...1) P(−2...1)

Precision 0.53 0.59 0.73 0.79
Recall 0.32 0.55 0.64 0.42
F-measure 0.40 0.57 0.68 0.55

tings P(0), P(−1...0) and P(−1...1). The F-measure of these aug-
mented models are plotted in Figure 2 with thinner grey bars.

Table 2 lists the exact figures of F-measure for all CRF
settings. The first row shows the change of F-measure when
we add pseudosyllable information to the P(0) setting. Perfor-
mance keeps improving up to the addition of S(−1...1), then im-
provement saturates when F-measure rises to a value around
0.60. From the second row of the Table, similar pattern of
performance improvement is observed for the augmented mod-
els of P(−1...0), but performance improvement saturates at an
earlier point. Moving to the third row, statistics show that
adding additional pseudosyllable information to P(−1...1) does
not seem to help significantly. The F-measure even reduces be-
yond S(−1...0).

The reason for performance to saturate (or even deteriorate)
in augmented P(−1...1) settings as well as P(−2...1) setting is
data sparsity. By looking into the model size of different set-
tings, it is discovered that when the number of feature functions
reaches 5000, F-measure attains its maximum at around 0.68 to
0.69. When the number of feature functions rises above 30000
(which is the case for P(−1...1) augmented with S(−1...1) and
S(−2...1), as well as P(−2...1)), F-measure drops. The rate of
recall drops significantly to below 0.6. However, precision in-
creases with the decreased number of word offsets detected by
the models.

To summarize the result across all different CRF settings,
the P(−1...1) + S(0) setting achieves the best result in terms of
F-measure (0.6899). It has a precision of 0.82 and the recall rate



is 0.60. The second best setting is P(−1...0) +S(0), giving an F-
measure of 0.6874. The precision and recall is more balanced,
at a value of 0.68 and 0.70 respectively.

Table 2: F-measure with different CRF setting with phonotactic
and pseudosyllable information

Phonotactic Additional pseudosyllable information
information nil S(0) S(−1...0) S(−1...1) S(−2...1)

P(0) 0.40 0.53 0.54 0.60 0.61
P(−1...0) 0.57 0.69 0.68 0.69 0.69
P(−1...1) 0.68 0.69 0.67 0.66 0.63

5. Discussion
5.1. Evaluation to results

The task of English word segmentation conducted in this study
is not a typical one. It is difficult to find related studies with
which we can compare our results. There is one relevant study
conducted by Harrington et al. [8]. In a comparable task of
word segmentation with 145 sentences, the hit and false alarm
rate of word boundary detection were reported. Following
Eq.(2), the equivalent F-measure of the best performing data set
was 0.56. This is significantly lower than the best F-measure
we report in Table 2, which is 0.69.

The performance difference between Harrington’s experi-
ment and ours is mainly due to the different approaches adopted.
Harrington tried to incorporate phonotactic knowledge by look-
ing for phone sequences which span across words yet never hap-
pen word internally. No probabilistic model was involved. The
feature functions we employ in CRF actually serve the same
purpose, but the CRF framework guarantees the robustness of
the trained parameters.

In our experiment, both phonotactic and pseudosyllable in-
formation are used for the word segmentation task. For CRF
settings which model lower-order phonotactic information (i.e.
P(0), P(−1...0)), F-measure increases with the addition of pseu-
dosyllable information. Data sparsity in higher-order phonotac-
tic models lead to performance saturation. Assuming this can be
solved (e.g. by introducing more data), it is unknown whether
pseudosyllable information can further boost the segmentation
performance. Further experiments are necessary before a con-
clusion can be reached.

5.2. Importance of syllable in automatic word recognition

In automatic word recognition, phoneme or sub-syllabic seg-
mental units are normally used as the basic unit for acoustic
modeling. Syllables are rarely considered. Nevertheless, sylla-
bles are by no means a trivial unit for human in the process of
speech understanding.

Word segmentation is a crucial step for human to under-
stand the long sequences of phonetic elements that come in
speech. However, signs of word boundary are not found di-
rectly in speech. To assist the perception of words, syllable in-
formation is heavily used. In a perceptual study, English speak-
ers were found to assume strong syllable as a signature to the
start of a word [9]. Actually, simple monosyllabic structures
can conclude 75% of the words in the Switchboard corpus [10].
In [11], the perceptual grounds on using syllables for human
speech perception were explained. It was argued that speech
understanding did not require a detailed spectral portraiture of
the signal.

With the above evidence from human perceptual studies, it
is expected that syllable modeling should be explored for au-
tomatic speech recognition as well. However, there are a lot
of problems before one can make use of syllables in automatic
speech recognition with syllables. For instance, given the huge
inventory, it is impossible to model syllables as we do to phones.
Ganapathiraju showed that the use of a syllable/tri-phone hybrid
system only slightly decreased the word error rate [10]. Thanks
to our previous research in prosody, we applied the supraseg-
mental concept with syllables and defined a new hierarchy in
modeling [4]. This approach could evade the aforementioned
problem. Target units to model are still phones, just that an ex-
tra layer of syllables is proposed in the hierarchy. The result of
word segmentation reported in this paper opens the possibility
of automatic speech recognition using this new hierarchy.

6. Future work
The word segmentation algorithm faces a sparsity problem
when the number of feature functions is too big. Some ef-
ficient methods to prune feature functions may help. On the
other hand, in this paper we use transcribed data for the word
segmentation problem. In practical applications, the algorithm
should work with the decoded phone sequences after pronun-
ciation modeling. That means word segmentation algorithm
will have to deal with unexpected, erroneous phone sequences.
More future work is needed to address these problems.
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