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Abstract 

This study aims at automatically classifying levels of acoustic 

prominence on a dataset of 200 Swedish sentences of read 

speech by one male native speaker. Each word in the sentences 

was categorized by four speech experts into one of three 

groups depending on the level of prominence perceived. Six 

acoustic features at a syllable level and seven features at a 

word level were used. Two machine learning algorithms, 

namely Support Vector Machines (SVM) and memory based 

Learning (MBL) were trained to classify the sentences into 

their respective classes. The MBL gave an average word level 

accuracy of 69.08% and the SVM gave an average accuracy of 

65.17 % on the test set. These values were comparable with the 

average accuracy of the human annotators with respect to the 

average annotations. In this study, word duration was found to 

be the most important feature required for classifying 

prominence in Swedish read speech. 

Index Terms: Swedish prominence, SVM, MBL, syllable and 

word level features, word duration 

 

1. Introduction 

Prominence is a prosodic phenomenon which has been studied 

intensively in different languages. A linguistic segment is 

typically defined as prominent when it is perceived to stand out 

of its context [1]. Although prominence is qualitative according 

to this definition, many studies in different languages have 

targeted the quantification of prominence in terms of its 

production and perception of various prosodic, phonetic and 

linguistic correlates (Refer to [2] for a review on different 

languages). 

      The detection and quantification of prominence in speech 

plays an important role in many applications, since it concerns 

the question of how speech is produced and segments are 

contrasted, e.g. prominence aids the decoding in speech 

recognition, and hence can be used for syntactic parsing [3]. 

Recently, more research is focusing on the audio-visual relation 

of prosody. Many studies report findings on correlations 

between acoustic prominence and facial movements and 

gestures [4]. Hence, developing systems for automatic 

prominence estimation or classification is important for the use 

in speech recognition, speech synthesis, and audio visual speech 

synchrony systems. 

In Swedish, prominence is often categorized with three 

terms: ‘stressed’, ‘accented’ and ‘focused’.  Previous research 

has reported that the most consistent acoustic correlate of stress 

in Swedish is segmental durations [5] and, less consistently, 

intensity [6]. As for accented syllables, the most apparent 

acoustic correlate compared to an unaccented foot is the 

presence of a fundamental frequency (F0) fall, referred to as a 

word accent fall [7]. Thus, an accent with a higher prominence 

level than ‘stressed’ is signaled mainly by F0, although an 

accented foot is usually also longer than an unaccented one [6].  

Finally, in focal accent, which is generally considered the 

highest level of prominence, the primary acoustic correlate for 

distinguishing ‘focused’ from ‘accented’ words is a tonal one – 

a focal accent or a sentence accent rise following the word 

accent fall [7]. However, this F0 movement is usually 

accompanied by an increased duration and intensity of the word 

in focus [5, 8]. These studies suggest possible distinct acoustic 

realizations of prominence. Nonetheless, they distinguish 

different classes of prominence in terms of a structural model 

related to its underlying linguistic unit. For example, in ‘focal 

accent’, more than one syllable gets affected by different 

acoustic variations, which is specifically evident in compound 

words. In accented words, the acoustic realizations might or 

might not extend to more than one syllable.  
This paper aims at automatically classifying levels of 

prominence in a speech segment, using sets of syllable and 

word level acoustic features, to train Support Vector Machines 

(SVMs) and Memory Based Learning (MBL).  

The paper is organized as follows: Section 2 presents the 

database and the annotation scheme; Sections 3 and 4 discuss 

the details of the method and features used for automatic 

classifications. Section 5 describes the experiments with the 

two machine learning algorithms used. In Section 6 we discuss 

the findings of the experiments and present the conclusions of 

the paper in Section 7. 

2. Data and Annotation 

Since it is suggested that prominence is perceived on a word 

level, while its acoustic correlates are realized at a syllable 

level, data collection for this problem has inherent limitations. 

Collecting annotations of prominence at a syllable level is 

firstly not relevant, since it disregards the perceptual 

prominence of the full word, and secondly, requires copious 

amounts of time for annotating large corpora. Acquiring 

annotations of prominence at a word level, introduces the risk 

of feature inconsistency at a syllable level, since in a prominent 

word, not all syllables are prominent. Nonetheless, it remains 

the consistent method since it relies on the human perception of 

the qualitative prominence of a word. 

In this study, a dataset was selected from a corpus 

containing 5000 sentences of news texts and literature, read by 

a professional Swedish male actor. The corpus contains high-

quality studio recordings for the purpose of speech synthesis 

voice creation. From this dataset, 200 sentences were randomly 

chosen and transcribed using a state-of-the-art speech aligner 

for Swedish [9]. The aligner gives a label file for each of the 

phonemes and words in the speech segment along with their 



duration. The 200 sentences were then annotated according to 

the level of prominence perceived by four speech experts. The 

annotators used a visual tool to listen to the sentences and to 

mark each word as either Prominent, ‘yes’ (class label 2), !ot 

Prominent, ‘no’ (class label 0), or Maybe Prominent, ‘maybe’ 

(class label 1). They were instructed to annotate prominence as 

a prosodic perceptual target, disregarding the underlying 

linguistic content.  After collecting the annotations, the average 

answer (x) of the four subjects was considered as the 

prominence level of the word. This average is then rounded into 

three levels: 0 (No prominence) when x<0.5, 1 (Maybe 

prominent) when 0.5 < x <1.5, and 2 (Prominent) when x>1.5. 

In this approach, the class ‘maybe’ is hypothesized to represent 

the guessing range of the subjects (when the subjects were not 

sure if a word is prominent or not, they chose the class ‘maybe’ 

as the prominence level of this word). Table 1 presents the 

averaged confusion matrix between annotations of the different 

annotators against the average annotation.  

The 200 sentences consisted of 2244 words and 3616 

syllables. Out of the 200 sentences, 150 sentences were 

randomly chosen for training and cross-validation, and 50 for 

final testing. 

 

Table 1: The average confusion matrix between 

annotations of the different annotators against the average 

annotation 
Predicted Class 0 (no) 1 (maybe) 2 (yes) 

True Class    

0 (no) 0.9744     0.3740 0.0399     

1 (maybe) 0.0256         0.3669      0.2263      

2 (yes)      0 0.2591 0.7337 

3. Method 

The machine learning algorithms were trained to classify 

prominence using syllable and/or word level features. In the 

case that syllables were classified for prominence, the 

classification results of all the syllables of a word were 

integrated to give the final prominence at a word level. All the 

syllables of a word carry their word’s prominence during 

training. This strategy could be called a late integration 

approach. On the other hand, in an early integration approach, 

syllable level features were combined to give word level 

features, before the training of the machine learning algorithms.  

Two major learning algorithms were used, namely Support 

Vector Machines, and Memory Based Learning, which 

represent examples of what is usually referred to as ‘eager 

learning’ and ‘lazy learning’, respectively. 

3.1. Post-Integration of Prominence from Syllable to 

Word level 

Among the various late integration methods, four different 

methods were tried, as follows: 

Average: The mean value for all of the classes is rounded 

to its nearest integer.  

WAverage: Presence of prominence is given more 

weighting (i.e. yes, maybe and no are given weighting 3, 2 and 

1, respectively).  

Max: The maximum value from the entire word is picked. 

If one syllable in the word is prominent, the word is considered 

prominent.  

Voting: A non-democratic voting scheme, where 

prominent syllables get more voting rights to choose the 

classification of the word (every “yes” has 3 votes, “maybe” 

has 2 votes and “no” has 1 vote).  

4. Feature Set 

As mentioned in the introduction, duration, loudness and F0 

movements are major acoustic correlates of prominence. In this 

study, a wide set of both syllable level and word level features 

have been taken into account. Features representing the 

syllables are taken from the syllable vowel, since vowels 

represent the nuclei and the acoustically stable part of the 

syllable: 

- Vowel Type 

- Vowel Duration  

- Mean F0: F0 is calculated for all the vowels in the files 
using the YIN state of the art real-time F0 tracking 

algorithm [10].  

- Vowel Mean Delta F0: Since F0 movements have been 

shown to play a major role in realizing prominence, the 

mean absolute value of the log delta F0 is calculated for 

each of the vowels. 

- Vowel Loudness: The study in [11] on British English 

reports that if a reliable measure of loudness is used, 

loudness can become a significant parameter to estimate 

prominence. In [12], it is found that spectral emphasis in 

Swedish correlates to prominence.  In this study we estimate 

the vowel average loudness using the ITU [13]. 

- Vowel Spectral Tilt: The role of spectral tilt as a 

prominence correlate in English has been investigated [14], 

as it is considered a good representative of the spectral 

quality of speech. Hence, the spectral tilt was calculated 

over the vowels with a frame centered at the middle of the 

vowel.  

- Average Syllable Duration In the Word 

- Word Duration  

- !umber of syllables 

- Word Mean F0  

- Word Mean Delta F0  

- Word Mean Spectral Tilt 

- Word Loudness 

5. Experiments with SVM and MBL 

5.1 Baseline 

Although it was expected that a very low percentage of words 

would be marked prominent, almost half the database consisted 

of words which were either ‘maybe’ prominent or prominent 

(‘yes’). We found that 56.27% of the words in the validation set 

and 47.36% of the words in the test set had ‘no’ prominence, 

which was used as the baseline to compare the results of the 

classification task. 

5.2 Memory Based Learning (MBL) 

In this study, the Tilburg Memory-Based Learner (TiMBL) 

[15], which is a decision-tree-based implementation of k-

nearest neighbor classification, was used. Very few abstractions 

are formed using the training data (lazy learning), but local  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generalizations are formed for a particular test sample, in order 

to classify it. For the numeric features Euclidian distance metric 

was used and for the symbolic features the Modified Value 

Distance Metric (MVDM) [16] was applied. 

5.3 Support Vector Machines 

Support Vector Machine (SVM) is a commonly used ‘eager 

learning’ method. It finds the best separating hyper-plane 

between two sets of classes in such a way that the distance 

between the two classes is maximized. Using different kinds of 

kernel functions, the separating hyper-plane can be found in a 

space of higher dimensionality than the data itself. It performs 

especially well with sparse data.  

In this study, we used an implementation of Least Square 

SVM (LS-SVM) [17]. For features which were symbolic, 

MVDM bins were pre-calculated to make them numeric values 

with one feature for each class. The features were then 

normalized for mean and standard deviation before training the 

SVMs. The results on the validation set are shown in Table 4 

for the optimized set of parameters. 

6. Analysis and Results 

By running a six-fold cross validation on the training corpus for 

both SVM and MBL, the classification accuracy for single 

features are presented in Table 2. It is clear that there is a high 

correlation between the word duration, the number of syllables 

in the word and the prominence of the word. The SVM gave a 

baseline performance whenever the features could not 

contribute to the classification.  

The SVM and MBL methods were also trained on other 

combinations of the features, most importantly: 1-Only syllable 

level features with post integration; 2- Only word level features; 

3- Syllable level and word level features with post integration. 

Figure 1 presents a box-plot showing the distributions of the 

accuracies of the six-fold cross-validation for different 

combinations of the features, and Table 3 presents the mean 

values of the accuracy on the same combinations for both MBL 

and SVM. 

Among the different late integration schemes suggested, 

we found that none of the schemes performed consistently 

better. Hence, we have presented the average results from the 

different integrations schemes suggested. Another important 

aspect of each of the methods is the confusion matrix, which 

indicates the per-class accuracies as opposed to the overall  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accuracy for the three prominence classes. Table 4 and Table 5 

display the confusion matrices for both the MBL and the SVM 

for the best feature set (all features); with an overall accuracy 

on the 50 sentences in the test set is 69.08% for MBL and 

65.17% for SVM. 

 

Table 2: Table showing the classification accuracy on 

single features using SVM or MBL sorted by their accuracies 

Feature 
MBL 

Accuracy 

SVM 

Accuracy 

Word Duration 64.58 66.65 

No Syllables 61.69 62.25 

Average Syllable 

duration 
56.86 

59.04 

Vowel Type 55.84 58.90 

Word Mean Delta F0 54.55 52.67 

Vowel Duration 54.10 52.67 

Word Spectral Tilt 52.15 52.67 

Word Loudness 48.29 52.67 

Word Mean F0 47.99 52.67 

Vowel Mean Delta F0 46.43 52.67 

Vowel Average F0 44.97 52.67 

Vowel Spectral Tilt 42.79 52.67 

Vowel Loudness 41.01 52.67 

 

Table 3: Average accuracies for different feature 

combinations on the six-fold cross-validation for the two 

methods (Baseline word accuracy = 52.67) 
Features MBL (%) SVM (%) 

Syllable Features 56.86  61.24 

Word Features 70.98 71.03 

Syllable Features + Word 

duration and No. Syllables 

70.12 71.23 

Only Word Duration and No. 

Syllables 

67.18 68.77 

All Features 71.52 72.55 
 

Table 5: Confusion matrix for the best features using the 

MBL on the test data  
Predicted Class 0 (no) 1 (maybe) 2 (yes) 

True Class    

0 (no) 85.12 7.85 7.02 

1 (maybe) 35.95 25.49 38.56 

2 (yes) 9.48 14.66 75.86 
 

 

 

 
Figure 1: A box-plot showing the distributions of the results of the six-fold cross-validation on both SVM and MBL. Different 

combinations of the features are compared to the baseline. Red: MBL, Blue: SVM. 



 

Table 6: Confusion matrix for the best features using the 

SVM on the test data 
Predicted Class 0 (no) 1 (maybe) 2 (yes) 

True Class    

0 (no)  87.19 8.26 4.55 
1 (maybe) 31.37 41.18 27.45 
2 (yes) 7.76 24.14 68.10 

7. Discussion  

Only 40% of the syllables had 'no' prominence, while classes 

'maybe' and 'yes' had around 30% syllables each. At the word 

level, 47% of the words had no prominence, 22% of the words 

had 'maybe' prominence and 18% of the words had 'yes' 

prominence. This indicated that words with a higher number of 

syllables tended to be more prominent in the Swedish language. 

Therefore, the number of syllables in a word was an important 

feature for the classification task. This indication was 

vindicated by the fact that the most informative features were 

word duration and number of syllables in the word as shown in 

Table 2 and Figure 1.  Most of the syllable level features did not 

perform better than the baseline, while word duration 

performed considerably better and contributed largely to the 

final accuracy. 

As shown in Figure 1, classification with only syllable 

level features using SVM was significantly better than the 

baseline (p=0.03), but no improvement was observed for MBL. 

Using word level features without word duration and number of 

syllables was almost the same as using only syllable level 

features for SVM, but was significantly better for MBL 

(p=0.02). The addition of either syllable level features or other 

word level features to word duration boosted the performance 

by a small amount. However, using all the features boosted the 

performance significantly over using only word duration 

(p=0.03 and 0.004 for SVM and MBL respectively).  

Even though the final results showed MBL in a slightly 

better light, the variations in MBL for different parameters of 

the algorithm were large, showing that the optimization was 

highly crucial and difficult. On the other hand, SVM seemed a 

more convenient tool to use because of the considerably fewer 

number of parameters to tune and the stable performance for 

different parameters.  

The results in general also show that the confusions were 

higher for the 'maybe' class, while the confusions between 'no' 

and 'yes' classes were not as high (2-6%). This gives a 

possibility for higher accuracies in automatic prominence 

detection using only two levels. Looking at Table 1, which is 

the confusion matrix of the annotators with respect to the 

average annotations, we can see that there is high confusion in 

the 'maybe' class, as expected. In addition, it is also interesting 

to see that these properties are similar to what we observe in the 

confusion matrices of the two machine learning algorithms. 

8. Conclusion 

Four annotators have categorized a Swedish database of read 

speech, consisting of 200 sentences by one male speaker, into 

three levels of prominence. Their agreement with the average 

annotations of prominence had an average of 69.17%. Using six 

acoustic features at a syllable level and seven acoustic features 

at a word level, we trained two machine learning algorithms to 

automatically classify the prominence of the words in the 

sentences. The Memory Based Learning and Support Vector 

Machines gave an average accuracy of 69.08 and 65.17%, 

respectively, on the test data. It was found that the word 

duration was the most significant feature for this classification 

task. The other acoustic features at a syllable level and word 

level did not contribute significantly to the results when used in 

isolation, but boosted the performance when used along with 

word duration. The final performances of the machine learning 

algorithms were comparable to the average agreement of the 

human annotators. Thus it may be possible to automatically 

annotate databases of Swedish read speech for prominence 

levels. 
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