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Abstract
Creating stimuli for perceptual experiments in intonation re-
search involves manipulation of pitch contours extracted from
spoken utterances. Difficulties arise when changes in the con-
tour shape need to be applied globally and smoothly in the
whole pitch curve. Moreover, it is hard to relate a gradual mod-
ification in some contour trait to its perceptual counterpart. In
this paper we propose a novel approach to stimuli manipulation
that is based on an extension of Principal Component Analy-
sis (PCA). Starting from a corpus of pitch curves a paramet-
ric description of the principal variation in the curve set is ob-
tained. This allows to locate clusters in this parameter space
that are related to linguistic categories. The search for pitch
curves with desired perceptual characteristics is carried out by
choosing convenient point locations with respect to the relevant
clusters. We illustrate this approach in a case study on ques-
tion/statement opposition in Neapolitan Italian.
Index Terms: Functional Data Analysis, Principal Component
Analysis, pitch resynthesis

1. Introduction
Most intonation research involves some combination of styliza-
tion of pitch tracks measured in a corpus of spoken utterances,
and perceptual experiments in which subjects judge resynthe-
sized versions of the utterances with the manipulated pitch con-
tours [1, 2, 3, 4]. The experimental pitch contours can be pro-
duced by some phonological or physiological model, or the con-
tours are created manually. Both approaches have drawbacks,
especially in research aimed at establishing the boundaries be-
tween putative discrete categories. In that type of research it is
usually assumed that there exists some (possibly multidimen-
sional) continuum of physical stimuli and that this continuum
is broken up on the basis of phonological and linguistic knowl-
edge of the subjects in an experiment. To conduct such experi-
ments one must be able to create a set of stimuli that sample the
continuum at equi-distance points. However, assumptions and
simplifications (e.g. stylization) characterizing the model may
conceal subtle yet important dynamic variations that are used by
the listener as discriminative cues, which ultimately will not be
tested in the perception experiment. Creating stimuli by hand
runs into the same kind of problems.

In this paper we introduce a novel approach to producing
a set of stimuli for intonation research that is based on princi-
pled processing of the pitch tracks of the original utterances. By
virtue of the application of advanced statistical techniques it is

now possible to cluster the pitch contours of the example utter-
ances in a way that guards against unwarranted interpretations.
In addition, it is now possible to generate a stimulus continuum
by adding or subtracting the characteristics of a specific cluster
to an ‘average’ pitch contour.

The approach proposed in this work is based on Principal
Component Analysis (PCA). PCA is a way to extract the main
variation dimensions, or Principal Components (PCs) under-
lying a set of samples, where the samples are vectors of real
numbers. A recently proposed extension of PCA allows to ex-
tract the PCs from a set of continuous functions. This means
that given a set of curves, like F0 contours, one can obtain a
compact description of the principal dimensions of the varia-
tion in the whole curve set. Such a description is compact in
the sense that global and smooth changes in the curve shapes
can be expressed by a few numerical parameters. By searching
for relations between the parameter values and linguistic cate-
gories, one can infer the phenomena underlying the variability
in the curve shapes. This approach was already shown in [5] for
energy curves and goes under the umbrella term of Functional
Data Analysis (FDA) [6].

Here we present a way to exploit the parametric descrip-
tion of the variations in pitch contours in order to generate new
contours with desired characteristics, which in turn can be used
for stimuli re-synthesis. The idea is based on reversing the pro-
cess that brings from the acoustic signal to its pitch contour and
then to its PCA parameters (henceforth PC scores). A linguistic
category like the question/statement (Q/S) opposition can be re-
alized in some language only (or mainly) by changing the pitch
contour. Running a PCA on a set of the F0 curves yields a pic-
ture like Fig. 3 (a), where each curve is represented by scores on
two PCs (dimensions), where the Q/S separation is visible. The
mathematical framework of PCA allows to reconstruct a curve
starting form its PC scores. Hence one can explore the PC space
and produce contours that were not present in the original data
set, but that are located in interesting areas of the PC space,
e.g. somewhere between the question and the statement cloud,
where perceptually ambiguous stimuli are likely to be obtained.
Then, by making use of an off-the-shelf F0 synthesizer, like
PSOLA available in Praat [7], one can impose the new F0 con-
tour on an existing waveform and obtain the desired stimulus.

This approach has several advantages. First, the parametric
representation (PC scores) of the real F0 contours is statistically
grounded. Second, the search for stimuli with specified charac-
teristics, like ambiguity, is guided by the PC representation that
shows where the real samples are in the PC space. Third, the



Figure 1: An example for classic PCA. A fictitious datasets col-
lects people age and salary. The first two PC are shown as well
as the projection of the point indicated by the arrow on the PC
axes.

contour variations that can be obtained by moving in the PC
space are smooth and global, i.e. they impact on the whole
curve. Fourth, all the steps from a set of PC scores to a stimulus
waveform are automatic.

The rest of the paper is organized as follows. Section 2
gives a global overview of the concepts underlying FDA and
functional PCA (fPCA) in particular. In Section 3 fPCA and
stimuli re-synthesis is applied to a case study based on Q/S op-
position in Neapolitan Italian. Conclusions are in Section 4.

2. Functional Data Analysis
2.1. Doing statistics on curves

In empirical science data is often collected in the form of sam-
pled functions, usually time series. The process of making in-
ference out of these data sets involves questions like “Is the
trend of temperature throughout the year in town A different
from that in town B?”. To answer this kind of questions usu-
ally global statistical indexes are first extracted from the time
series (mean, variance, peaks, etc.) and then multivariate sta-
tistical techniques are applied on those indexes (ANOVA, linear
regression, etc.). However, sometimes patterns are not easily re-
vealed by simple (scalar) statistical indexes, because they reside
in the dynamics of the signal in time. Functional Data Analy-
sis (FDA) [6] is a suite of computational techniques that extend
statistical techniques developed for scalar data to the function
domain, offering the possibility to make inferences from sets of
whole stretches of signals, without the need to reduce the dy-
namic variation to static statistical indexes, a process that may
destroy essential information, and in practice makes inference
on dynamic traits of signals problematic.

2.2. Functional Principal Component Analysis (fPCA)

Classic PCA is a way to extract and display the main modes
of variation of a set of multidimensional data. Starting from a
data set in its original coordinates, a new coordinates system is
found such that by expressing (projecting) the data points on
it, the first projection accounts for the largest part of the vari-
ance in the data set, the second for the second most important
part of the variance, etc. Fig. 1 shows an example of PCA ap-
plied to a fictitious set of data about age and salary of people.
The new set of coordinates (PC1, PC2) captures the “natural”
modes of variation, since the data is mainly varying along the
PC1 dimension, which captures the correlation between age and
salary, while PC2 can be interpreted as relative wealth irrespec-

tive of age. Every point in the data set can now be re-expressed
in terms of the PC coordinates. For example the point indicated
by the arrow gets a negative score on the PC1 axis and a pos-
itive score on the PC2 axis. Note that PCA finds orthogonal
coordinates such that the variations across the data set can be
described by independent scores. In our example it means that
while an older age is more likely associated with a higher salary
(positive correlation), PC1 values do not bring any expectation
on PC2 (no correlation).

While in classic PCA principal components are vectors of
the same dimension as the data vectors, in fPCA principal com-
ponents become functions defined on the same time interval as
the original data set. Even though it is not possible to visual-
ize orthogonal coordinate systems, the same concepts exposed
in the example above still apply. Fig. 2 shows a way to rep-
resent functional PCs. Like in ordinary PCA, the percentage
of explained variance is specified for every PC (top of every
panel). Then, for each component the solid line shows the aver-
age signal, i.e. the function obtained by averaging each point in
time across the whole data set, while the ‘+’ and the ‘-’ curves
represent the effect of adding/subtracting a positive multiple of
one of the PC functions to the average curve (the latter is the
same in all panels). To make a parallel with Fig. 1, the average
curve corresponds to the origin of the (PC1,PC2) coordinates,
while the ‘+’ curve in the PC1 panel corresponds to a point ly-
ing somewhere on the positive side of the PC1 axis, i.e. scoring
zero on PC2.

3. Case study
3.1. General description

In Neapolitan Italian, as in other roman languages, the Ques-
tion/Statement (Q/S) opposition can be expressed by intona-
tional means alone. The same syntactic structure, with the same
lexical content and displaying the same sequence of segments,
can be uttered with two different intonational contours which
lead to two different pragmatic meanings. A great body of re-
search in the Autosegmental-Metrical framework for the study
of the phonology of intonation has shown that contours can be
successfully modeled as a sequence of discrete, local events.
Perception experiments in this framework are usually based on
the manipulation of individual events in F0 contours. However,
recent studies explore the hypothesis that dynamic proprieties
of F0 contours (e.g. global shapes) can be perceptually relevant
too. In this perspective, re-synthesis should not be performed
by manipulating discrete events in a pitch contour, but rather by
manipulating longer stretches of the signal [8, 9].

3.2. Material

Two male native speakers of Neapolitan Italian (‘AS’ and ‘SC’)
were recorded in a sound proof booth by means of a Roland
Edirol UA 25EX sound card connected to a laptop and through
a Sennheiser E 835 microphone. Three carrier sentences were
used having the same syllable count and lexical stress positions
and containing two accents also in the same relative positions
(‘Mile

¯
na lo vuole ama

¯
ro (?)’ = Milena drinks it (i.e. her cof-

fee) black, ‘Vale
¯
ria viene alle no

¯
ve (?)’ = Valeria arrives at 9,

‘Ame
¯
lia dorme da no

¯
nna (?)’ = Amelia sleeps at grandma’s).

Each sentence was pronounced five times in Q and five time in
S mode by each speaker. Three out of the 2× 3× 5× 2 = 60
utterances were discarded, thus leaving 57 utterances. After re-
moving leading and trailing silence, the beginning and the end
of the two accented vowels were manually marked by the sec-



ond author of this work. The duration of each sentence is around
1 second irrespective of the speaker/sentence. F0 was extracted
from each utterance using the Praat autocorrelation-based F0

extractor with default parameter settings, which results in the
computation of F0 values every 10 ms.

3.3. Data preparation

In order to eliminate uninteresting but large variation in the sig-
nal due to speaker identity, F0 was first converted into semi-
tones, then the time average was subtracted from each F0 curve.
The first FDA step is to interpolate each sampled curve to obtain
a function y(t).This operation is essential because FDA tools
work on functional representations, but also it allows the user
to smooth the raw data.Although automatic procedures exist for
determining the optimal degree of smoothing, like generalized
cross-validation ([6], Par. 5.4.3), we decided to follow a more
empirical guideline by smoothing up to a point where average
and peak velocity in F0 curves were within the experimentally
observed limits found in [10].

Any FDA data processing requires that each curve (func-
tion) should have the same duration. The alignment we per-
formed was not just a linear time normalization, but it made use
of the so-called landmark registration ([6], Chap. 7). It is a
nonlinear time warping procedure that warps the time axis of
each curve in such a way to align all previously marked rele-
vant points in time, called landmarks. In our case, we had four
landmarks available from the manual annotation, i.e. onset and
offset of each of the two accented vowels in the sentence, which
were made to coincide in (normalized) time as much as possi-
ble, while keeping the curve distortion reasonable. The reason
to do that is that FDA statistics are based on the hypothesis that
a time instant means the same thing across all curves.

3.4. Functional PCA

Functional PCA was applied on the data prepared in the way
described above. Fig. 2 shows that PC1 basically expresses the
tendency of being ahead or behind in the region of the first ac-
cented vowel, and at the same time shows that a late peak in
the first accented vowel region is associated with a high peak
in the second accented vowel region. PC2 expresses mostly a
difference in excursion. Note also that in all cases PCs stick to
the mean in the middle region. This does not mean that there
are no variations in that region, but that variations are not sys-
tematic enough to be captured. Fig. 3 shows the distributions of
PC scores with respect to Q/S mode and speaker identity. Both
speakers seem to use the two dimensions (factors) expressed by
PC1 and PC2 in a different yet consistent way. PC1 coefficients
are higher for questions than for statements for both speakers,
but for speaker SC they are generally higher than for speaker AS
(Fig. 3 (b)). PC1 coefficients express how similar a curve is to
the ‘+’ or ‘-’ prototypes in the first panel of Fig. 2. Positive val-
ues correspond to curves whose peak corresponding to the first
accented vowel is realized later, vice versa for negative values.
This means that both speakers tend to realize questions with a
later first peak than what they do for statements, but those shifts
are relative to a characteristic of the speaker, since speaker SC
tends to realize those peaks generally later than speaker AS. A
similar story goes for PC2 (Fig. 3(b)). Questions consistently
present a larger pitch excursion than statements, but this time
AS is using generally larger excursion than SC does.

Figure 2: Functional PCA applied to the 57 landmark-registered
pitch contours dataset. Solid line shows the average signal
µ(t), while the ‘+’ and the ‘-’ curves represent the effect of
adding/subtracting a multiple of the principal component func-
tion to µ(t). Vertical dashed lines indicate the landmarks..

3.5. Creating new stimuli by moving in the PC space

(f)PCA can be considered as a dimensionality reduction or
data compression technique. In our case, once we store the
mean function µ(t) (the solid curve in Fig. 2) and the two
PC functions PC1,2(t) (a positive multiple of which added
to/subtracted from µ(t) gives the +/- curves in Fig. 2) we can
reconstruct all of the original 57 F0 curves y(t) by only storing
two PC scores s1, s2 for each of them. A reconstructed curve
has the form:

y(t) ≈ µ(t) +

KX
k=1

skPCk(t) (1)

whereK = 2 is the number of PCs you decide to use. This is an
approximation since PC1 and PC2 together explain around 80%
of the variance in our data set. To go beyond reconstruction of
existing curves, one can observe that in eq. (1) any arbitrary set
of sk’s could be used to obtain a new curve. To make this oper-
ation meaningful, one can look at the distribution of PC scores
in Fig. 3 and decide to explore areas of potential interest. Since
a small change in any PC score will result in a small and smooth
change in the reconstructed curve, we expect that in the region
between the Q and the S clusters we would find pitch contours
with mixed characteristics, which are likely to be perceived as
ambiguous by native speakers.

The following procedure is used to obtain a re-synthesized
audio file: First choose an utterance which will be used as base
signal upon which a new pitch contour will be imposed. Then
select a (preferably close) point in the PC space and construct a
pitch contour using eq. (1). Then apply the inverse of the land-
mark registration originally applied to the base signal, linearly
re-expand it to its original duration, reconvert to unnormalized



(a) Q/S modality (b) Q/S modality and speaker

Figure 3: Scatter plots showing the distributions of PC scores with respect to Q/S mode and speaker identity.

Hz, generate a set of samples from this last functional repre-
sentation and finally use a synthesizer like Praat PSOLA [7] to
apply the new F0 contour to the base signal. All these operation
are automatic and require only some scripting.1

3.6. Quality of the manipulated stimuli

The second author, a native speaker of Neapolitan Italian, infor-
mally evaluated the perceptual impact of stimuli which were
resynthesized using points in the (PC1,PC2) space. Starting
from a base stimulus (circled in Fig. 3(b)), three kind of moves
in the PC space were tested, viz. towards a target point (i) cor-
responding to an existing stimulus of the opposite category (Q
vs. S), (ii) halfway the Q and S clusters and (iii) in the op-
posite direction with respect to the middle area between clus-
ters (see Fig. 3(b), points 1, 2 and 3, respectively). The proce-
dure was repeated for many base stimuli of each category and
speaker. Stimuli re-mapped on an opposite category (i) gen-
erally sounded natural. Stimuli in the Q/S middle area (ii) do
sound ambiguous. Subtle differences in the degree of ambigu-
ity seem to be linked to speaker identity and the direction of
the manipulation (Q towards S or vice versa). This leads us to
hypothesize that along the continuum which joins two stimuli
belonging to two different categories various points can be per-
ceptually relevant, i.e. ambiguity is not necessarily restricted to
the midpoint. Finally, going in the opposite direction (iii) we
obtained overtly non ambiguous stimuli which sounded some-
how emphatic, but still natural-sounding.

4. Conclusions
This work has shown that it is possible to adopt a data driven
approach in the manipulation of stimuli for intonation research.
The mathematical framework of functional PCA allows not
only to recover a “geographic map” of the linguistic categories
present in a data set of spoken utterances, but also to move in-
side this map in search for potential confusion areas where those
categories get mixed up. Any point on the map generates auto-
matically a pitch contour that can be used to re-synthesize a
stimulus. The informal analysis of results presented above has

1All data and scripts necessary to produce the results shown in this
work are available at the url: http://lands.let.ru.nl/FDA.

shown that the fPCA maps geometry is indeed a useful guid-
ance to retrieve perceptually interesting stimuli, whose quality
was judged overall satisfactory.
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