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Abstract

In order to improve speech naturalness of a unit selectioB TT
system it is necessary to annotate prosodic phrase boesdiari
the whole source corpus, which is extremely difficult to aghi
manually. It is thus usefull to employ a machine classifidnisT
paper discusses suitable feature selection for such fitagiin

of a Czech TTS corpus, presents results of experiments with
linear and quadratic classifiers and artificial neural neka/o
and compares them with human annotators.

Index Terms: speech synthesis, prosody, prosodic phrase, clas-
sification, neural network, unit selection, corpus

1. Introduction

Unit selection as a paradigm for classical concatenatieecp
synthesis has introduced a specific shift in methodologgxif t
to-speech (TTS) system design and development: many tasks
in speech synthesis call for solutions based on methodsrrath
from the area of automatic speech recognition (ASR) tham fro
the TTS domain as it has usually been perceived. The reason
for this lies in the fact that the unit selection approactiessl
more on fine segmental and suprasegmental description ef hug
speech segment databases than on techniques for signdi-modi
cation of concatenated segments.

One of the important features of such a description of a
speech segment database for unit selection TTS is undoubtly
proper designation oprosodic phrasesn the source corpus.

A concatenation algorithm must select units with compati-
ble suprasegmental parameterization to ensure natursbgyo
without disturbing phenomena, and as we have discussed else
where [1], position of a speech segment within its prosodic
phrase is an important part of this parameterization.

Should the target cost function be enhanced by the feature
of prosodic phrase position, itis necessary that the whpdesh
corpus be annotated with prosodic phrase boundaries. Hawev
it is usually infeasible to perform this task manually dueast
amounts of data (often several thousands of recorded s@sten
in a corpus for a single voice), and therefore an automatic ap
proach must be utilized. The one based on artificial neurtal ne
works (ANN) is presented further in this paper, on the exampl
of a Czech male voice in the corpus of 10,000 declarative sen-
tences for the Czech TTS system ARTIC (the corpus comprises
approx. 12,000 sentences out of which 10,000 are declarativ
and the rest is with other modality [2]).

2. Prosodic phrase annotation
2.1. Reference data

The concept oprosodic phrasgas understood here, basically
corresponds to a traditional phonetical view, that is suph@
netic unit which constitutes perception of theg/thmicalqual-
ities in language on a level higher than the lexical. A présod

phrase is mainly delimited by acoustical features of itsriabu
aries and it can also contain an “intonation peak”. However,
as Palkova discusses [3], there is no empirical evidenpe su
porting any stronger assumption about the intonation pegdep
ence/absence or their number in a Czech sentence.

This, together with significantly less dynamical intonatio
of Czech in comparison with English, can lead to difficulties
with objective phrase boundary designation even for hurisan |
teners. Human annotators are usually very inconsistentig
ing what is and what is not a prosodic phrase boundary, aed thi
can be overcome by utilization of a machine tagger. However,
there is still a major problem: how can we obtain consistefat r
erence data for machine learning when three different human
annotators produce three different prosodic phrase atioiga
of a single utterance?

We have solved this issue by acquiring 100 parallel anno-
tations of 250 sentences (randomly selected from our TTS cor
pus) and then using a maximum likelihood approach to estimat
the objective prosodic phrase annotation — details can tredfo
in [1]. We have worked with naive listeners (as Buhmann et
al. concludes [4], naive listeners are reliable enoughririlar
tasks such as this one; moreover, we have achieved very simi-
lar inter-annotator agreement for Czech to what Mo et al. re-
ports for English [5]) and in conformity with Wightman [6] we
wanted them to designate places where they perceptuakgden
phrase boundaries, not where they observed specific inbonat
events inF, contour in terms of the ToBlI or Tilt phonologies.

This set of annotated 250 sentences is used as the refer-
ence data for machine learning and classification descfibved
ther in this paper. Unlike e.g. [7] or [8], reporting on a simi
lar task of automatic prosodic phrase detection (both irntd@os
University Radio News Corpus), we do not detect ToBI-based
boundary tones, but strictly perceptually based eventsu(th
produced by a maximum likelihood model of an “objective lis-
tener/annotator”), whatever their acoustical and textaaie-
lates may be.

2.2. Automatic annotation

The task of automatic prosodic phrase annotation can be refo
mulated into the task of machine classification whetherether
is or is not a prosodic phrase boundary between two adjacent
prosodic words (further denoted as “left/right contextQur
overall goal is thus to set up a suitable machine classifiegus
the aforementioned manually annotated 250 sentences amd th
automatically extend prosodic phrase annotation to thieafes
the 10,000-sentence corpus using this classifier.

For the sake of classification performance analysis we have
created five different reference sets (further denoteBedsl —
Set 5) from the annotated 250 sentences: each set has 50 ran-
domly selected sentences as the testing data while thememai
ing 200 sentences are used as the training data. This way we



can analyse sensitivity of the classifier towards changagpint
data.

Although the classification accuracy is often a good mea-
sure of classification performance, it is not of the highest i
portance for us. First of all there are two major types of para
boundarieswith andwithout a pauseMore than 99 % of intra-
sentential pauses are perceived as phrase boundariebU9], t
we are not much interested in such cases. Far more important
for us are the cases without any pause indication (norgtrivi
cases). Moreover, from the overall goal of our work (i.e.hsuc
TTS corpus annotation which would eventually lead to elimi-
nation of unwanted disturbing prosodic phenomena in ceacat
nated speech) we can infer that we are primarily interestéuei
false negative rat@~NR) of the classifiedon-pauseases —we
want as few false rejections as possible, while false alamas
not that crucial. This results from the fact that if a speegh u
(e.g. a diphone string) from a prosodic word realizing pdiso
phrase boundary in the corpus is not labelled as being within
such an intonationally functioning segment of speech,rntlza
then erroneously used by the concatenation algorithm ih auc
place where a phrase boundary is unwanted, therefore causin
disturbing prosodical phenomena. The opposite case isgar |
problematic: it would result in surface non-realizationtex-
tually suggested phrase boundary, which would in most cases
remain unnoticed by a listener. And since the average number
of non-pause positives in our data is significantly smateant
non-pause negatives (approx. 17 % of the non-pause cases are
phrase boundaries), FNR in non-pause cases is also thesharde
criterion.

3. Features for classification
3.1. Types of features

Each word in the TTS corpus basically offers two domains of
features to be parameterized by: acoustical and textuake Mo
specifically, we can think of the following types of features

e [p contour

e speech signal energy

e phone lengths

e local variability of phone lengths

e syntactical-analytical functions of two adjacent words

e parts-of-speech of two adjacent words

Relevancy of each type is often at least partially language-
dependent. We have, therefore, excluded energy (it is teo de
pendent on phone types, whereas we did not find any consistent
relation with phrase boundaries, except for pre-pausestasel
parts-of-speech (phrasing, at least in Czech and othetasimi
highly inflectional languages, is in relation with syntamt with
morphology). This general feature type selection is mtgida
by phonetical research, e.g. [3].

The following list shows the concrete features which were
taken into account:

e Absolute phone length(La). Feature vector comprises
the absolute lengths (in milliseconds) of the last three
phone tokens in the left context and the first three phone
tokens in the right context.

e Relative phone length(Lr). Similar toLa but the rel-
ative length of a phone token is the ratio of its absolute
length to the average length of the corresponding phone

type (phone identity). If we writer NwhereNis a num-
ber, it means that the last/firstphone tokens are taken
instead of three.

Average length of phones in prosodic wordgLavg).

The feature vector comprises a value given as the sum
of phone token lengths of the left context divided by the
number of phone tokens in the left context. The same is
calculated for the right context. If we uka@, thenLavg

is in absolute values, lfr , thenLavg is in relative val-
ues.

Standard deviation of lengths of phones in prosodic
words (Lst d). Calculated analogically thavg but
Lst d expresses overall variability of phone lengths in
the left/right context.

Fy contour (Fx). The Fy contour of each prosodic
word in the corpus is normalized and represented by 10
equidistant values as described in [10]. The feature vec-
tor comprisex last values of such a representatiorff

of the left context and first values of the right context.

Cadence ID(Fcad). Following [10], theF, contour of
each prosodic word in the corpus is approximated by one
of ten characteristic contours, so called cadences. The
feature vector comprises ID of a cadence in the left/right
context.Fcad is a categorical feature, and therefore it is
coded as a vector of 0’s with a 1 in the dimension corre-
sponding to the cadence ID.

Analytical functors (AFUN). Analytical functors repre-
sentsyntactical function®f lexical words. The inven-
tory of functors we have used originates from Prague
Dependency Treebank 2.0. It has been slightly modi-
fied and it is listed in Table 1. Our whole corpus has
been syntactically parsed using thiect oMl applica-

tion [11] with McDonald’s dependency parser yielding
accuracy 85 % for Czech text. The parser assigns each
lexical word an analytical functor. The feature vector for
prosodic phrase boundary classification then comprises
an analytical functor of the last lexical word of the left
context (the context is a prosodic word which can consist
of more lexical words) and the first lexical word of the
right context. AFUN is also a categorical feature, coded
analogically toFcad.

Apriori estimation of analytical functors (AFUNap).
Each lexical word form can be parameterized by a vec-
tor of apriori probabilities of analytical functions this
word form can appear in (e.gp(w = Obj) = 0.5,

p(w = Subj) = 0.2, etc.). Advantage of such a param-
eterization is that no syntactical parsing is needed — only
a lexicon with word forms and probabilities, which —in
our case — has been derived from data in Prague Depen-
dency Treebank 2.0.

3.2. Feature selection

The key factor for successful machine classification is tke d
criminative ability of selected features which should de/dif-
ferent classes in a feature space as much as possible. &iajot
classifier splits the feature space (or the space of cladsifie-

tors respectively) into two sets by a hypersurface given by a
function f and parameter®. If x € R" is n-dimensional
classified vector, then the dichotomy classifier can be evritts

o(x,©) :{ 0 (£(x,0) > 0)

1o (f(x,©) < 0) (1)



Table 1:List of analytical functors.

abbrev. | description
Pred Predicate
Shb Subject
Obj Object
Adv Adverbial
Atv Complement
Atr Attribute
Pnom | Nominal predicate
AuxV Auxiliary verb “be”
Coord | Coordination
Apos | Apposition
AuxTR | Reflexive tantum
AuxP | Preposition
AuxC | Conjunction
AuxOZ | Redundant or emotional iten
AuxyY Adverbs and particles

Table 2: Classification performance with various feature vec-
tors. A — accuracy on all classified vector8,P R.— false pos-
itive rate in non-pause case# NR — false negative rate in
non-pause cases (the most important criterion).

feature vector A FPR FNR
AFUN 0.7214 | 0.0000 | 1.0000
AFUNap 0.9046 | 0.0560 | 0.7313
La, F10 0.8820 | 0.0091 | 0.9730
La, Fcad 0.8673 | 0.0182 | 0.9750
La, Lavg, Lstd, F3 0.8850 | 0.0045 | 0.9730
Lr, Lavg, Lstd, F3, AFUN 0.9147 | 0.0317 | 0.5142
Lr, Lavg, Lstd, F3, AFUNap || 0.8996 | 0.0371 | 0.6041
Lr5, Lavg, Lstd, F10, AFUN || 0.8968 | 0.0182 | 0.7838
Lr5, Lavg, Lstd, F5, AFUN 0.9027 | 0.0136 | 0.8108
La5, Lavg, Lstd, F5, AFUN 0.8850 | 0.0000 | 1.0000
La, F3, AFUN 0.8850 | 0.0045 | 0.9730
Lavg, Lstd, F3, AFUN 0.8820 | 0.0091 | 0.9730
Lr, Lavg, Lstd, F3 0.8968 | 0.0318 | 0.7027
F3, AFUN 0.8820 | 0.0091 | 0.9730

The valuec(x, ®) thus assigns the vecter a numeric ID of

a class according to its position against the hypersurfdte.
we want to see how well the selected features discriminate th
classes, we can propose a simple suitable class of hyparearf

k n
frk(x,0) =ao + ZZai,j -l

i=1 j=1

)

For k = 1 we have a linear classifier, fér = 2 quadratic and
for k = 3 cubic. Their geometric interpretation is intuitive and
they are more prone to overtraining than for example newtal n
works or CARTSs — their performance is thus a suitable measure
of how well the selected features discriminate the classes.

We have performed series of experiments with different
combinations of features parameterising the left and rigint
texts in classification of presence/absence of prosodiasehr
boundaries irSet 1-Set 5. The goal of each experiment was
to train both linear and quadratic classifiers on trainingdd
eachSet to achieve classification performance on respective
testing data as high as possible. Parame®&iaf both classi-
fiers were trained (optimized) in our systédvbdul ar using a
simple genetic algorithm. In each experiment only the dfi@ss
performing better was taken into account. The feature vecto
which leads to the best average classification performance o
testing data fronBet 1-Set 5 (measured primarily as FNR in
non-pause cases) will be used in classification experinveitis
ANN.

Table 2 shows the results of the classification experiments
with various feature vectors. We can claim that the bestitesu
can be achieved (using the given data) with the 50-dimeation
feature vector given dsr, Lavg, Lstd, F3, AFUN.

The values in the table are averaged d&der 1-Set 5. The
average number of classified vectors in testing data of 8ath
is 319.8, the average number of pauses is 69.6 and positive no
pause cases 43 (i.e. phrase boundaries not followed by a)paus
Intra-sentential pauses are treated as separate prosodis w
and cases with pause as the right context are also classified b
no special feature indicating pause is used.

We can also see an interesting fact from Table 2: should
we consider only textual feature&FUNap quite unexpectedly
outperformsAFUN, but if we consider both textual and acousti-
cal featuresAFUN helps more thadFUNap. We can therefore
say that without any acoustical cues it is better to know only
what analytical function a word could be in rather than what i
actually is.

4. ANN classification

Since the feature vector given bs, Lavg, Lst d, F3, AFUN
has proven best, we used it further in experiments aimed-at im
proving classification performance, primarily decreadiidR

in non-pause cases.

We have decided to use a simple fully connected feed-
forward artificial neural network (ANN) with 50 units in the
input layer (this number equals to the dimension of the setec
feature space), one unit in the output layer (by its valuden t
range from 0 to 1 indicating the class), sigmoidal activatio
function given as

s(z) = Tz,m: (3)

and a common backpropagation learning algorithm. After se-
ries of experiments with the number of hidden layers and hid-
den units (their numerical results are not important hereas
shown that the network with one hidden layer comprising 100
units can learn the training data very well and adding moitsun
does not improve its performance.

As the number of training epochs reaches a specific value,
ANN becomes overtrained and the classification performance
on the testing data starts to degrade. It is thus vital to stop
the training process just before reaching this number. Kewe
the actual number strongly depends on the initial conditioh
ANN as well as on changes in training and testing data — in
other words, it has turned out that the ANN classifier is very
sensitive towards changes in input data. The optimal numiber
training epochs and the optimal ANN initialization are this
classifier parameters to be experimentally estimated.

The classification experiments with ANN were performed
on Set 1-Set 5 with four different random ANN weight ini-
tializations ( ni t 1- ni t 4). In each experiment ANN was
trained on the training data of a particufset and after a given
number of training epochs its performance was evaluateden t
testing data of th&et .

Table 3 shows accuracy, FPR and FNR averaged over
Set 1-Set 5 for each initialization ni t 1-I ni t 4. The eval-
uation process was performed only in selected training lepoc
so as to eliminate possible random unstable improvements
which are specific only for the given data and would distoet th
evaluation of the overall ability of ANN to generalise. Thable
also shows the values of the Matthews Correlation Coefficien



(MC) given as
TP.-TN — FP-FN
V(TP +FP)(TP + FN)(TN + FP)(TN + FN)’

averaged ovefSet 1-Set 5 with the given initialization and
number of training epochs/ (P stands for true positived;’ N

for false negatives, etc. — in our case all the values are only
for the non-pause cases). MC is a scalar measure of “quality”
of a classifier and it tries to interpret the whole two-dinienal
confusion matrix in a single value. Albeit very important,ef-

fort to decrease FNR can lead to excessive increase of FPR and
thus to the classifier performance deterioration. Theegfour

aim is to decrease FNR without decreasing MC significantly.

MC = @)

Table 3: ANN experimentsA — accuracy on all classified vec-
tors, FFPR — false positive rate in non-pause casésV R —
false negative rate in non-pause cases (the most important ¢
terion), M C' — Matthews Correlation Coefficient.

Init 1
epochs 10 20 50 100 | 150 | 200 | 300 | 400
A 090 090 | 090 | 091 | 091 | 091 091 | 0.91
FPR 0.06 | 0.06 | 0.07 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03
FNR 045 | 040 | 039 | 046 | 0.50 | 0.51 | 0.53 | 0.51
MC 0.54 | 056 | 055 | 0.55| 055 | 0.55 | 0.53 | 0.55
Init 2
A 091] 091] 090 091] 092 092 092 0.91
FPR 0.05 | 0.05 | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03
FNR 0.45 | 044 | 040 | 0.43 | 042 | 0.46 | 048 | 0.51
MC 0.55 | 055 | 056 | 0.57 | 0.59 | 0.58 | 0.58 | 0.55
Init 3
A 091 ] 091 091 092 092 092] 092 0.91
FPR 0.05 | 0.06 | 0.07 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03
FNR 040 | 038 | 0.36 | 0.42 | 043 | 0.43 | 0.50 | 0.52
MC 0.59 | 0.58 | 058 | 0.60 | 0.62 | 0.62 | 0.57 | 0.56
Init 4
A 091] 09 [ 090] 091] 091] 092] 0917 091
FPR 0.06 | 0.07 | 0.07 | 0.04 | 0.03 | 0.04 | 0.03 | 0.03
FNR 041 | 040 | 039 | 043 | 047 | 045 | 052 | 0.53
MC 0.56 | 0.55 | 0.56 | 0.58 | 0.58 | 0.59 | 0.56 | 0.55

It is not important what the actual weight values for
I ni t 1- ni t 4 are — the table shows the results for all initial-
izations so as to allow for comparison and illustration ofvho
sensitive ANN is towards initial conditions and that not @il
them converge to the best results. We can seelthat 3
leads to average FNR of 0.36 and average accuracy of 0.91 (wit
MC only slightly lower than the maximum) after 50 training
epochs, hence giving the best performance. This perforenanc
estimation is quite robust because it is calculated @edrl—
Set 5. The worst FNR witH ni t 3 after 50 epochs was 0.42,
the best was 0.33.

5. Conclusions

After evaluating the experiments with ANN we can antici-
pate that if we parameterise each pair of adjacent prosodic
words with the feature vectdr , Lavg, Lst d, F3, AFUNand
then we perform 50 epochs of ANN training with initializa-
tion | nit 3 and the manually annotated set of 250 sentences
from our corpus, we will be able to automatically label prdiso
phrase boundaries in the remaining 9,750 sentences of the co
pus so that approximately 91 % of prosodic word pairs will
be correctly classified in terms of a prosodic phrase boyndar
presence/absence, and 31 % of non-pause boundaries will be
missed.

Although accuracy 91 % can be considered as plausible,
31 % of missed non-pause boundaries might seem as rather
disappointing. However, firstly we must state that 69 % hit
rate is significant improvement against chance level, ane se
ondly we must point out that the performance of the classifier

is as good as the best human annotators. The inter-annotator
agreement on the phrase boundary placement in our reference
data measured as the Fleiss’ kappa among 100 annotators [1]
yields kr = 0.6636, which means substantial agreement but
still with considerable differences in phrase boundarycepr

tion. Another measure of the agreement can be the average
Cohen’s kappa over all pairs of annotators, for our refezenc
data yielding<’? = 0.6710. If we think of the reference an-
notation (created by the maximum likelihood model) as being
produced by a virtual “objective annotator”, then we can mea
sure the agreement of the human annotators with the referenc
annotation by the Cohen’s kappa too — we get the average value
kgy = 0.7578 including the pause cases anff,” = 0.5488
disregarding the pause cases. Finally, the correspondirepa
ment between the reference annotation and the annotation ge
erated by the described ANN classifier yields) ¥ = 0.8793
ands AN = 0.6635, which means that the annotation quality
of ANN is significantly above the average of the human anno-
tators. We can just note that in terms of the Cohen’s kappa onl
five out of 100 human annotators had higher agreement with the
reference annotation than the classifier presented aretitast
this paper.
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