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Abstract
In order to improve speech naturalness of a unit selection TTS
system it is necessary to annotate prosodic phrase boundaries in
the whole source corpus, which is extremely difficult to achieve
manually. It is thus usefull to employ a machine classifier. This
paper discusses suitable feature selection for such classification
of a Czech TTS corpus, presents results of experiments with
linear and quadratic classifiers and artificial neural networks,
and compares them with human annotators.
Index Terms: speech synthesis, prosody, prosodic phrase, clas-
sification, neural network, unit selection, corpus

1. Introduction
Unit selection as a paradigm for classical concatenative speech
synthesis has introduced a specific shift in methodology of text-
to-speech (TTS) system design and development: many tasks
in speech synthesis call for solutions based on methods rather
from the area of automatic speech recognition (ASR) than from
the TTS domain as it has usually been perceived. The reason
for this lies in the fact that the unit selection approach relies
more on fine segmental and suprasegmental description of huge
speech segment databases than on techniques for signal modifi-
cation of concatenated segments.

One of the important features of such a description of a
speech segment database for unit selection TTS is undoubtly
proper designation ofprosodic phrasesin the source corpus.
A concatenation algorithm must select units with compati-
ble suprasegmental parameterization to ensure natural prosody
without disturbing phenomena, and as we have discussed else-
where [1], position of a speech segment within its prosodic
phrase is an important part of this parameterization.

Should the target cost function be enhanced by the feature
of prosodic phrase position, it is necessary that the whole speech
corpus be annotated with prosodic phrase boundaries. However,
it is usually infeasible to perform this task manually due tovast
amounts of data (often several thousands of recorded sentences
in a corpus for a single voice), and therefore an automatic ap-
proach must be utilized. The one based on artificial neural net-
works (ANN) is presented further in this paper, on the example
of a Czech male voice in the corpus of 10,000 declarative sen-
tences for the Czech TTS system ARTIC (the corpus comprises
approx. 12,000 sentences out of which 10,000 are declarative
and the rest is with other modality [2]).

2. Prosodic phrase annotation
2.1. Reference data

The concept ofprosodic phrase, as understood here, basically
corresponds to a traditional phonetical view, that is such apho-
netic unit which constitutes perception of therhythmicalqual-
ities in language on a level higher than the lexical. A prosodic

phrase is mainly delimited by acoustical features of its bound-
aries and it can also contain an “intonation peak”. However,
as Palková discusses [3], there is no empirical evidence sup-
porting any stronger assumption about the intonation peak pres-
ence/absence or their number in a Czech sentence.

This, together with significantly less dynamical intonation
of Czech in comparison with English, can lead to difficulties
with objective phrase boundary designation even for human lis-
teners. Human annotators are usually very inconsistent in judg-
ing what is and what is not a prosodic phrase boundary, and this
can be overcome by utilization of a machine tagger. However,
there is still a major problem: how can we obtain consistent ref-
erence data for machine learning when three different human
annotators produce three different prosodic phrase annotations
of a single utterance?

We have solved this issue by acquiring 100 parallel anno-
tations of 250 sentences (randomly selected from our TTS cor-
pus) and then using a maximum likelihood approach to estimate
the objective prosodic phrase annotation – details can be found
in [1]. We have worked with naive listeners (as Buhmann et
al. concludes [4], naive listeners are reliable enough in similar
tasks such as this one; moreover, we have achieved very simi-
lar inter-annotator agreement for Czech to what Mo et al. re-
ports for English [5]) and in conformity with Wightman [6] we
wanted them to designate places where they perceptually sensed
phrase boundaries, not where they observed specific intonation
events inF0 contour in terms of the ToBI or Tilt phonologies.

This set of annotated 250 sentences is used as the refer-
ence data for machine learning and classification describedfur-
ther in this paper. Unlike e.g. [7] or [8], reporting on a simi-
lar task of automatic prosodic phrase detection (both in Boston
University Radio News Corpus), we do not detect ToBI-based
boundary tones, but strictly perceptually based events (though
produced by a maximum likelihood model of an “objective lis-
tener/annotator”), whatever their acoustical and textualcorre-
lates may be.

2.2. Automatic annotation

The task of automatic prosodic phrase annotation can be refor-
mulated into the task of machine classification whether there
is or is not a prosodic phrase boundary between two adjacent
prosodic words (further denoted as “left/right context”).Our
overall goal is thus to set up a suitable machine classifier using
the aforementioned manually annotated 250 sentences and then
automatically extend prosodic phrase annotation to the rest of
the 10,000-sentence corpus using this classifier.

For the sake of classification performance analysis we have
created five different reference sets (further denoted asSet1–
Set5) from the annotated 250 sentences: each set has 50 ran-
domly selected sentences as the testing data while the remain-
ing 200 sentences are used as the training data. This way we



can analyse sensitivity of the classifier towards changes ininput
data.

Although the classification accuracy is often a good mea-
sure of classification performance, it is not of the highest im-
portance for us. First of all there are two major types of phrase
boundaries:with andwithout a pause. More than 99 % of intra-
sentential pauses are perceived as phrase boundaries [9], thus
we are not much interested in such cases. Far more important
for us are the cases without any pause indication (non-trivial
cases). Moreover, from the overall goal of our work (i.e. such
TTS corpus annotation which would eventually lead to elimi-
nation of unwanted disturbing prosodic phenomena in concate-
nated speech) we can infer that we are primarily interested in the
false negative rate(FNR) of the classifiednon-pausecases – we
want as few false rejections as possible, while false alarmsare
not that crucial. This results from the fact that if a speech unit
(e.g. a diphone string) from a prosodic word realizing prosodic
phrase boundary in the corpus is not labelled as being within
such an intonationally functioning segment of speech, it can be
then erroneously used by the concatenation algorithm in such a
place where a phrase boundary is unwanted, therefore causing
disturbing prosodical phenomena. The opposite case is far less
problematic: it would result in surface non-realization oftex-
tually suggested phrase boundary, which would in most cases
remain unnoticed by a listener. And since the average number
of non-pause positives in our data is significantly smaller than
non-pause negatives (approx. 17 % of the non-pause cases are
phrase boundaries), FNR in non-pause cases is also the hardest
criterion.

3. Features for classification
3.1. Types of features

Each word in the TTS corpus basically offers two domains of
features to be parameterized by: acoustical and textual. More
specifically, we can think of the following types of features:

• F0 contour

• speech signal energy

• phone lengths

• local variability of phone lengths

• syntactical-analytical functions of two adjacent words

• parts-of-speech of two adjacent words

Relevancy of each type is often at least partially language-
dependent. We have, therefore, excluded energy (it is too de-
pendent on phone types, whereas we did not find any consistent
relation with phrase boundaries, except for pre-pause cases) and
parts-of-speech (phrasing, at least in Czech and other similar
highly inflectional languages, is in relation with syntax, not with
morphology). This general feature type selection is motivated
by phonetical research, e.g. [3].

The following list shows the concrete features which were
taken into account:

• Absolute phone length(La). Feature vector comprises
the absolute lengths (in milliseconds) of the last three
phone tokens in the left context and the first three phone
tokens in the right context.

• Relative phone length(Lr). Similar toLa but the rel-
ative length of a phone token is the ratio of its absolute
length to the average length of the corresponding phone

type (phone identity). If we writeLrNwhereN is a num-
ber, it means that the last/firstN phone tokens are taken
instead of three.

• Average length of phones in prosodic words(Lavg).
The feature vector comprises a value given as the sum
of phone token lengths of the left context divided by the
number of phone tokens in the left context. The same is
calculated for the right context. If we useLa, thenLavg
is in absolute values, ifLr, thenLavg is in relative val-
ues.

• Standard deviation of lengths of phones in prosodic
words (Lstd). Calculated analogically toLavg but
Lstd expresses overall variability of phone lengths in
the left/right context.

• F0 contour (Fx). The F0 contour of each prosodic
word in the corpus is normalized and represented by 10
equidistant values as described in [10]. The feature vec-
tor comprisesx last values of such a representation ofF0

of the left context andx first values of the right context.

• Cadence ID(Fcad). Following [10], theF0 contour of
each prosodic word in the corpus is approximated by one
of ten characteristic contours, so called cadences. The
feature vector comprises ID of a cadence in the left/right
context.Fcad is a categorical feature, and therefore it is
coded as a vector of 0’s with a 1 in the dimension corre-
sponding to the cadence ID.

• Analytical functors (AFUN). Analytical functors repre-
sentsyntactical functionsof lexical words. The inven-
tory of functors we have used originates from Prague
Dependency Treebank 2.0. It has been slightly modi-
fied and it is listed in Table 1. Our whole corpus has
been syntactically parsed using theTectoMT applica-
tion [11] with McDonald’s dependency parser yielding
accuracy 85 % for Czech text. The parser assigns each
lexical word an analytical functor. The feature vector for
prosodic phrase boundary classification then comprises
an analytical functor of the last lexical word of the left
context (the context is a prosodic word which can consist
of more lexical words) and the first lexical word of the
right context.AFUN is also a categorical feature, coded
analogically toFcad.

• Apriori estimation of analytical functors (AFUNap).
Each lexical word form can be parameterized by a vec-
tor of apriori probabilities of analytical functions this
word form can appear in (e.g.p(w = Obj) = 0.5,
p(w = Subj) = 0.2, etc.). Advantage of such a param-
eterization is that no syntactical parsing is needed – only
a lexicon with word forms and probabilities, which – in
our case – has been derived from data in Prague Depen-
dency Treebank 2.0.

3.2. Feature selection

The key factor for successful machine classification is the dis-
criminative ability of selected features which should divide dif-
ferent classes in a feature space as much as possible. Dichotomy
classifier splits the feature space (or the space of classified vec-
tors respectively) into two sets by a hypersurface given by a
function f and parametersΘ. If x ∈ Rn is n-dimensional
classified vector, then the dichotomy classifier can be written as

c(x,Θ) =

{

0 ⇔ (f(x,Θ) ≥ 0)
1 ⇔ (f(x,Θ) < 0)

. (1)



Table 1:List of analytical functors.

abbrev. description
Pred Predicate
Sb Subject
Obj Object
Adv Adverbial
Atv Complement
Atr Attribute

Pnom Nominal predicate
AuxV Auxiliary verb “be”
Coord Coordination
Apos Apposition

AuxTR Reflexive tantum
AuxP Preposition
AuxC Conjunction

AuxOZ Redundant or emotional item
AuxY Adverbs and particles

Table 2: Classification performance with various feature vec-
tors. A – accuracy on all classified vectors,FPR.– false pos-
itive rate in non-pause cases,FNR – false negative rate in
non-pause cases (the most important criterion).

feature vector A FPR FNR

AFUN 0.7214 0.0000 1.0000
AFUNap 0.9046 0.0560 0.7313
La,F10 0.8820 0.0091 0.9730
La,Fcad 0.8673 0.0182 0.9750
La,Lavg,Lstd,F3 0.8850 0.0045 0.9730
Lr,Lavg,Lstd,F3,AFUN 0.9147 0.0317 0.5142
Lr,Lavg,Lstd,F3,AFUNap 0.8996 0.0371 0.6041
Lr5,Lavg,Lstd,F10,AFUN 0.8968 0.0182 0.7838
Lr5,Lavg,Lstd,F5,AFUN 0.9027 0.0136 0.8108
La5,Lavg,Lstd,F5,AFUN 0.8850 0.0000 1.0000
La,F3,AFUN 0.8850 0.0045 0.9730
Lavg,Lstd,F3,AFUN 0.8820 0.0091 0.9730
Lr,Lavg,Lstd,F3 0.8968 0.0318 0.7027
F3,AFUN 0.8820 0.0091 0.9730

The valuec(x,Θ) thus assigns the vectorx a numeric ID of
a class according to its position against the hypersurface.If
we want to see how well the selected features discriminate the
classes, we can propose a simple suitable class of hypersurfaces:

fk(x,Θ) = a0 +
k

∑

i=1

n
∑

j=1

ai,j · x
i
j . (2)

For k = 1 we have a linear classifier, fork = 2 quadratic and
for k = 3 cubic. Their geometric interpretation is intuitive and
they are more prone to overtraining than for example neural net-
works or CARTs – their performance is thus a suitable measure
of how well the selected features discriminate the classes.

We have performed series of experiments with different
combinations of features parameterising the left and rightcon-
texts in classification of presence/absence of prosodic phrase
boundaries inSet1–Set5. The goal of each experiment was
to train both linear and quadratic classifiers on training data of
eachSet to achieve classification performance on respective
testing data as high as possible. ParametersΘ of both classi-
fiers were trained (optimized) in our systemModular using a
simple genetic algorithm. In each experiment only the classifier
performing better was taken into account. The feature vector
which leads to the best average classification performance on
testing data fromSet1–Set5 (measured primarily as FNR in
non-pause cases) will be used in classification experimentswith
ANN.

Table 2 shows the results of the classification experiments
with various feature vectors. We can claim that the best results
can be achieved (using the given data) with the 50-dimensional
feature vector given asLr,Lavg,Lstd,F3,AFUN.

The values in the table are averaged overSet1–Set5. The
average number of classified vectors in testing data of eachSet
is 319.8, the average number of pauses is 69.6 and positive non-
pause cases 43 (i.e. phrase boundaries not followed by a pause).
Intra-sentential pauses are treated as separate prosodic words
and cases with pause as the right context are also classified but
no special feature indicating pause is used.

We can also see an interesting fact from Table 2: should
we consider only textual features,AFUNap quite unexpectedly
outperformsAFUN, but if we consider both textual and acousti-
cal features,AFUN helps more thanAFUNap. We can therefore
say that without any acoustical cues it is better to know only
what analytical function a word could be in rather than what it
actually is.

4. ANN classification
Since the feature vector given asLr,Lavg,Lstd,F3,AFUN
has proven best, we used it further in experiments aimed at im-
proving classification performance, primarily decreasingFNR
in non-pause cases.

We have decided to use a simple fully connected feed-
forward artificial neural network (ANN) with 50 units in the
input layer (this number equals to the dimension of the selected
feature space), one unit in the output layer (by its value in the
range from 0 to 1 indicating the class), sigmoidal activation
function given as

s(x) =
1

1 + e−λx
, (3)

and a common backpropagation learning algorithm. After se-
ries of experiments with the number of hidden layers and hid-
den units (their numerical results are not important here) it has
shown that the network with one hidden layer comprising 100
units can learn the training data very well and adding more units
does not improve its performance.

As the number of training epochs reaches a specific value,
ANN becomes overtrained and the classification performance
on the testing data starts to degrade. It is thus vital to stop
the training process just before reaching this number. However,
the actual number strongly depends on the initial conditions of
ANN as well as on changes in training and testing data – in
other words, it has turned out that the ANN classifier is very
sensitive towards changes in input data. The optimal numberof
training epochs and the optimal ANN initialization are thusthe
classifier parameters to be experimentally estimated.

The classification experiments with ANN were performed
on Set1–Set5 with four different random ANN weight ini-
tializations (Init1–Init4). In each experiment ANN was
trained on the training data of a particularSet and after a given
number of training epochs its performance was evaluated on the
testing data of theSet.

Table 3 shows accuracy, FPR and FNR averaged over
Set1–Set5 for each initializationInit1–Init4. The eval-
uation process was performed only in selected training epochs
so as to eliminate possible random unstable improvements
which are specific only for the given data and would distort the
evaluation of the overall ability of ANN to generalise. The table
also shows the values of the Matthews Correlation Coefficient



(MC) given as

MC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (4)

averaged overSet1–Set5 with the given initialization and
number of training epochs (TP stands for true positives,FN

for false negatives, etc. – in our case all the values are only
for the non-pause cases). MC is a scalar measure of “quality”
of a classifier and it tries to interpret the whole two-dimensional
confusion matrix in a single value. Albeit very important, an ef-
fort to decrease FNR can lead to excessive increase of FPR and
thus to the classifier performance deterioration. Therefore, our
aim is to decrease FNR without decreasing MC significantly.

Table 3:ANN experiments.A – accuracy on all classified vec-
tors, FPR – false positive rate in non-pause cases,FNR –
false negative rate in non-pause cases (the most important cri-
terion),MC – Matthews Correlation Coefficient.

Init 1
epochs 10 20 50 100 150 200 300 400
A 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91
FPR 0.06 0.06 0.07 0.05 0.04 0.03 0.03 0.03
FNR 0.45 0.40 0.39 0.46 0.50 0.51 0.53 0.51
MC 0.54 0.56 0.55 0.55 0.55 0.55 0.53 0.55

Init 2
A 0.91 0.91 0.90 0.91 0.92 0.92 0.92 0.91
FPR 0.05 0.05 0.07 0.05 0.04 0.04 0.03 0.03
FNR 0.45 0.44 0.40 0.43 0.42 0.46 0.48 0.51
MC 0.55 0.55 0.56 0.57 0.59 0.58 0.58 0.55

Init 3
A 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.91
FPR 0.05 0.06 0.07 0.04 0.03 0.03 0.03 0.03
FNR 0.40 0.38 0.36 0.42 0.43 0.43 0.50 0.52
MC 0.59 0.58 0.58 0.60 0.62 0.62 0.57 0.56

Init 4
A 0.91 0.90 0.90 0.91 0.91 0.92 0.91 0.91
FPR 0.06 0.07 0.07 0.04 0.03 0.04 0.03 0.03
FNR 0.41 0.40 0.39 0.43 0.47 0.45 0.52 0.53
MC 0.56 0.55 0.56 0.58 0.58 0.59 0.56 0.55

It is not important what the actual weight values for
Init1–Init4 are – the table shows the results for all initial-
izations so as to allow for comparison and illustration of how
sensitive ANN is towards initial conditions and that not allof
them converge to the best results. We can see thatInit 3
leads to average FNR of 0.36 and average accuracy of 0.91 (with
MC only slightly lower than the maximum) after 50 training
epochs, hence giving the best performance. This performance
estimation is quite robust because it is calculated overSet1–
Set5. The worst FNR withInit 3 after 50 epochs was 0.42,
the best was 0.33.

5. Conclusions
After evaluating the experiments with ANN we can antici-
pate that if we parameterise each pair of adjacent prosodic
words with the feature vectorLr,Lavg,Lstd,F3,AFUNand
then we perform 50 epochs of ANN training with initializa-
tion Init 3 and the manually annotated set of 250 sentences
from our corpus, we will be able to automatically label prosodic
phrase boundaries in the remaining 9,750 sentences of the cor-
pus so that approximately 91 % of prosodic word pairs will
be correctly classified in terms of a prosodic phrase boundary
presence/absence, and 31 % of non-pause boundaries will be
missed.

Although accuracy 91 % can be considered as plausible,
31 % of missed non-pause boundaries might seem as rather
disappointing. However, firstly we must state that 69 % hit
rate is significant improvement against chance level, and sec-
ondly we must point out that the performance of the classifier

is as good as the best human annotators. The inter-annotator
agreement on the phrase boundary placement in our reference
data measured as the Fleiss’ kappa among 100 annotators [1]
yields κF = 0.6636, which means substantial agreement but
still with considerable differences in phrase boundary percep-
tion. Another measure of the agreement can be the average
Cohen’s kappa over all pairs of annotators, for our reference
data yieldingκavg

C = 0.6710. If we think of the reference an-
notation (created by the maximum likelihood model) as being
produced by a virtual “objective annotator”, then we can mea-
sure the agreement of the human annotators with the reference
annotation by the Cohen’s kappa too – we get the average value
κ
avg
C1

= 0.7578 including the pause cases andκavg
C2

= 0.5488
disregarding the pause cases. Finally, the corresponding agree-
ment between the reference annotation and the annotation gen-
erated by the described ANN classifier yieldsκANN

C1 = 0.8793
andκANN

C2 = 0.6635, which means that the annotation quality
of ANN is significantly above the average of the human anno-
tators. We can just note that in terms of the Cohen’s kappa only
five out of 100 human annotators had higher agreement with the
reference annotation than the classifier presented and tested in
this paper.
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