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Abstract
Spoken input of address data in modern GPS units is typically
done by filling one information slot after another. To fill-in
multiple slots at once, the particular slot information contained
in the input utterance has to be extracted. We employ phrase
boundaries to separate the speech signal into certain slots. In
our evaluation, several types of input utterances differing in the
number of slot information and their order are thoroughly ex-
amined. For each type, a set of twenty strong prosodic features
is trained. By incorporating supporting a-priori features, an F-
measure value of 93.0% is reached for a typical use case.
Index Terms: prosody, phrase boundary detection, multislot
input modality

1. Introduction
A general objective of speech driven applications is improving
the human-machine-interface. One major goal is a more natu-
ral input modality. Applications in the automotive environment
serve as a good example. To give directions, a GPS navigation
unit needs to ask for destination information, which typically
consists of more than one piece of information. These pieces
are organized in multiple slots. Currently the user input is done
by filling one slot after another. However, rather than

Please give the city-name.
- Berlin

Please give the street-name.
- Hauptstraße

Please give the number.
- 10

a more natural way of inputting data like

Please give the address.
- Berlin, Hauptstrasse 10

would be desirable. Such an approach would allow the user
to fill-in multiple slots at a time. Only one speech utterance
is needed while the particular parts may be freely combined.
As a first step towards this, we consider input that contains the
content of two slots. Thereby city-name and street-name (which
may occur in combination with a number) are taken as two form
entries. Also, filler words, e.g. “I would like to go to . . .”, are
not taken into account.

GPS units in general provide only few computational re-
sources. Working with spoken input poses an extraordinary
challenge. The system has to deal with a huge vocabulary of
street and city names. For this reason, state-of-the-art GPS
units which allow multiple-slot filling are bound to a simplified
recognition strategy. Only city-name and street-name may be
combined and are recognized in a two stage process. At first, the
phoneme sequence corresponding to the input signal is hypoth-
esized. Afterwards appropriate city-names and street-names are

hypothesized by simultaneously working through the phoneme-
hypotheses from left and right. Resulting are two lists of city-
and street-names, as found within the left beginning of the
phoneme-hypotheses and the right beginning of the phoneme-
hypotheses, respectively. Entries of both lists are combined in
a manner such that they build possible addresses. After vari-
ous rating steps the most probable combination is given. How-
ever, these lists often hold up to thousands of combinations and
significant resources are allocated to the detection of the most
probable one. In this paper we follow on the idea of detecting
the phrase boundary (PB) between city-name and street-name
in the spoken input. This can help to reduce the list of prob-
able address combinations significantly. If the known PB of
certain combinations does not match with the computed PB,
these combinations are given a lower ranking. For detecting
the PB, prosodic information is used. In [1] it is shown that
adding prosodic information in limited recognition tasks leads
to higher word recognition accuracy and error-rate reduction.
To evaluate the impact of prosody for detecting the PB in our
application, we compute the twenty most informative prosodic
features. Furthermore, we examine the detection of PB using a
combination of prosodic features and a priori knowledge.

The paper is organized as follows. In Section 2 the speech
database is described. In Section 3 we explain the approach
followed in this study. The Erlangen Prosody Module is dis-
cussed, which is used to compute the prosodic features. Section
4 deals with the methods used to select and evaluate particular
features. In Section 5 the results are analyzed. Also, further
improvements considering the inclusion of prior knowledge are
presented. Conclusions and outlook are presented in Section 6.

2. Speech Database

Our database consists of the different ways of producing ad-
dresses used by German speaker in order to enter them in nav-
igation systems. 97 speakers (48 female and 49 male) were
recorded. Each produced a set of 150 different addresses of
the type city-name x street-name and, in addition, 50 different
addresses which also contained the house number (city-name
x street-name x house number). 12 speakers (3 female and
9 male) produced the 150 input signals the other way round,
street-name x city-name, and additionally 50 addresses contain-
ing also the house number (street-name x house number x city-
name). Thus the following utterances occurred: City PB Street;
City PB Street, Number; Street PB City; and Street, Number PB
City. In addition, phoneme hypotheses as well as an estimation
of the PB position for all recordings were computed (based on
forced time-alignment).



3. Phrase Boundaries Detection

In our approach, the PB is detected using prosody, while work-
ing independently of already existing recognition systems and
their processing. Therefore the feature vectors used in classifi-
cation are built on an independent segmentation of the speech
signals. The prosodic features and aforementioned segmenta-
tion are computed using the Erlangen Prosody Module[2], as
described below.

3.1. Erlangen Prosody Module

The Erlangen Prosody Module was implemented at the Chair of
Pattern Recognition at the University of Erlangen-Nuremberg in
the course of the Verbmobil project [3][4].

At first, basic prosodic features – like fundamental fre-
quency (F0) and short time signal energy – are computed for
short speech frames with a typical frame rate of 10 ms. These
are tied to the voiced/unvoiced decision [5]. As prosodic phe-
nomena last for a larger amount of syllables or words, the
frame-wise computed features have to be considered in a larger
context. Therefore, a segmentation is performed using the
voiced/unvoiced decision. For each voiced segment, features
are computed which model the suprasegmental characteristics,
also based on the surrounding segments. An example is the
maximum F0 value, which can be computed on the voiced seg-
ment in question or a combination of the actual segment and
neighboring segments. All features are computed within a con-
text of at most ±2 voiced segments. In the end, for each voiced
segment a feature vector with 187 prosodic features is com-
puted. The feature computation is described in detail in [6].

3.2. Phrase Boundary Model

In order to extract the information pieces contained in the
speech signal, we need a way to associate each part of the spo-
ken input with them. Since the particular parts of the address are
listed consecutively, we only need to find the boundary separat-
ing these chunks. In general, items in spontaneously produced
lists are realized such that they are perceptually salient (as de-
scribed in [7]). According to this, an item-separating boundary
can be detected by examination of the prosodic structure of the
utterance at its position.

PBs are probable to occur at speech pauses. During
the voiced/unvoiced decision they are recognized as voiceless
speech parts. The prosodic changes describing the transition
from one information chunk to the next can be modeled using
prosodic information from the voiced speech parts that are sur-
rounding an unvoiced period. The approach followed in this
study is therefore to concatenate the prosodic feature vectors of
two consecutive voiced segments, yielding a vector with 374
elements. Based on these features, unvoiced segments repre-
senting PB are classified as follows.

4. Selection and Evaluation of Features

As the concatenated feature vector consists of all the prosodic
information of two succeeding voiced segments, it is rather
large. High-dimensionality is not advantageous in terms of
computation. Therefore, a selection step is introduced to se-
lect the most distinctive features with highest entropy. For this,
we use the Weka Framework[8].

4.1. Feature Selection

Features are selected which improve the classification regarding
overall recognition rate (RR). For the classification, a J48 De-
cision Tree is trained on the recordings of 30% of the speakers.
For testing, the recordings of the remaining 70% are used. The
RR is defined as

RR =
truePositivePB + trueNegativePB

2

where truePositivePB denotes the fraction of PB that were
correctly classified, and trueNegativePB denotes the fraction
of non-PB unvoiced segments that were correctly classified.

A turn-based algorithm is employed, starting with an empty
feature set. In each turn, one feature is added that maximizes the
RR in combination with the existing feature selection. This is
done until 20 features are selected.

4.2. Feature Evaluation

We observe a significantly higher amount of feature vectors that
describe no PB compared to feature vectors describing a PB.
The overall RR does not compensate for this mismatch. Hence,
for evaluation of the selected features regarding recognition per-
formance, a better measurement is needed. We employ the F-
measure, which employs the precision (true positives related to
false positives) and recall (fraction of found PB) terms:

F =
2 · (precison · recall)

(precision + recall)

where precision and recall are computed as follows:

precision =
TPPB

TPPB + FPPB
, recall =

TPPB

TPPB + FNPB

5. Experimental Results
To gain an understanding of the performance of prosodic fea-
tures to detect PB in our application, several experiments were
undertaken. Input complexity plays a key role in the recognition
performance. Hence, we conducted several experiments which
apply different constraints to the input data.

In the following, different sequences of city-name, street-
name and house number are examined. We present the F-
measure of the selected features and the best found features are
discussed.

5.1. Most General Input Modality

The most general form of input is for the user to decide which
fields are filled-in and in what order. All possible combinations
of city-name, street-name and a potential house number to form
a valid German address were presented in Section 2. However,
as this work is about multiple slots, the input modality of enter-
ing only one input value at a time has not been considered.

Figure 1 shows evaluation results for the twenty features
which were automatically selected as described in Section 4.1.
By successively enlarging the vector of prosodic features, the
F-Measure converges within the twenty best features towards
83%. See Table 1 for a listing of the first four selected features
as the rest of the features is almost all energy features. The most
informative feature is the length of silence of the unvoiced seg-
ment itself. In terms of PB detection, this is rather expected.
During the production of listings, perceived pauses after each
element are commonly used to separate the elements from each
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Figure 1: Improvement of F-measure for successively selected
prosodic feature for totally unknown input combinations.

other. The second and the third selected features are durational
features. They take into account the length of the voiced seg-
ment to the left, and the combined length of third and second
left voiced segment, respectively. A potential reason for this
selection is the examination of final lengthening. Final length-
ening is also commonly used to emphasize PBs. As a fourth
feature, the minimum value of the fundamental frequency (F0)
within the third and second left voiced segments was selected.

Table 1: The first four selected features for unknown input com-
binations.

no. prosodic feature expresses
1 Length of silence in current segment
2 Duration of left (voiced) segment
3 Duration of left and second left segment
4 Minimum F0 within third and second left segment

5.2. Restricted Input

In order to reduce the complexity of input signals, the user may
be asked to specifically enter the city-name first and then the
street-name, or vice versa. Again, for both ways of producing
addresses the twenty best features were automatically selected.

As can be seen in Figure 2, the recognition of PBs using
prosodic features is better for input signals of type city-name
x street-name. A possible explanation for this is the fact that
the combination street-name x city-name is rather unusual for
entering addresses in German. This may be a reason why the
prosodic boundary is not that emphasized. In contrast, PBs
in input signals where the city-name is followed by the street-
name are modeled even better using prosodic features. In this
case, an F-measure of 88.2% was achieved.

The first four selected prosodic features for the address
combination city-name x street-name are shown in Table 2. The
length of silence in the currently considered unvoiced segment
yet again describes the most informative feature. As in the case
of totally unknown input sequence, durational features as well
as F0 features are selected. However, the focus is not partic-
ularly on durational features. Energy features are rated much
higher this time. In addition even more features considering
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Figure 2: Improvement of F-measure for successively selected
prosodic feature for two input values of known order.

F0 values of both sides of the current unvoiced segment are se-
lected. The stronger emphasis of F0 can be an indication for the
occurrence of the continuation-rise intonation pattern, which is
generally used in enumerations or listings. The pitch rises at
the end of an item if another one is following; afterwards the
onset is at a comparatively lower pitch value. In contrast to the
more general input case, the features selected to represent the
PB in the restricted case take even shimmer into account. This
may hint at the fact that speakers lower their voice at the end of
a list item and therefore stronger variations in energy are more
frequent. Considering these specific input cases, shimmer may
be better characteristic feature for PBs than in the more gen-
eral input case. The features for the address combination street-
name x city-name consider more F0 based features. Their poor
performance, however, is in our opinion due to the absence of
prosodic information because the user is not familiar with this
kind of entering addresses.

Table 2: The first four selected features of city-name x street-
name combinations.

no. prosodic feature expresses
1 Length of silence in current segment
2 Mean F0 of left segment
3 Duration of left segment
4 Absolute normalized energy of left and second left segment

In case of restricted input, the information contained in the in-
put signal and its order are known. For further improvement, the
impact of a-priori knowledge in combination with prosodic fea-
tures was examined. Therefore the following additional features
were included in the selection process next to the 374 prosodic
features.

5.2.1. Position

As an additional feature we use the probability that a PB is
observed given a particular position in the utterance. For all
recordings of the same structure the position of the PB is com-
puted relatively to the length of the utterance. These relative
positions are then summed up. The resulting frequency table
gives information about how often a PB occurs at a particular
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Figure 4: Improvement of F-measure for successively selected
prosodic features and certain additional a-priori knowledge of
city-name x street-name combinations.

position in the utterance. To use this information, a Gaussian
distribution is fitted to the frequency of the particular positions.
For the city-name x street-name recordings, it is shown in Fig-
ure 3.

5.2.2. Speech Model

In addition, a 4-gram speech model was computed based on
the phoneme hypotheses. For every phoneme, the probability is
given that a PB follows. For each unvoiced segment, the corre-
sponding phoneme hypotheses are analyzed. According to their
probability given by the speech model, the highest probability
occurring is added to the feature vector.

5.2.3. Results

Figure 4 shows the improvement gained by taking the described
additional knowledge into account. The solid curve shows the
improvement per-feature when using only prosodic features for
the recognition of PBs. The two curves ending above the solid
curve are read in terms of taking the particular additional feature
as basis and successively enlarging the feature vector by adding
one prosodic feature after another in order to improve the over-

all recognition rate. As shown, the 4-gram probability of the
speech model only slightly improves the F-measure. This is in
contrast to the probability based on the position of the unvoiced
segment, which increases the F-measure to 92.6%. The curve
which is denoted as all describes the improvement gained by se-
lecting features out of a set comprising of all prosodic features
and both a-priori features. The first three selected features are
then the probability given by the position, the length of the silent
pause within the unvoiced segment and the probability given by
the 4-gram speech model. With this setting, we achieve a re-
markable F-measure of 93.0%.

6. Conclusion
In this work, we introduced the PB as a valuable cue to multiple
information extraction from single speech signals. A recogni-
tion task like spoken input to a GPS unit may be solved more
efficiently by using the PB to help separation of input slots.
The PB is found by exploiting prosody. The approach fol-
lowed on in this work considers the impact of prosody on words
which were produced in chain opposite to free speech used in
the Verbmobil Project. In contrast to the study of Gretter and
Seppi, prosody was applied to detect PBs in German utterances
which are specifically tailored for the needs of GPS units. Fur-
thermore, the computation of PBs is done independently of the
speech recognizer (except the computation of the speech model
which is based on the phoneme hypotheses) and can be, there-
fore, applied to any existing recognition system.

It is shown that prosodic information is a sufficient cue to
reliably detect PBs in the signal. This is especially the case
when the order of information given is known beforehand; it
may also be related to how natural this order is to the speaker.
The introduction of supporting a-priori features gives further
improvement to the recognition performance. Our examination
furthermore revealed almost all types of prosodic information
are covered by the automatic selection process.
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