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Abstract
As an effort to make prosody useful in spontaneous speech
recognition, we adopt a quasi-continuous prosodic annotation
and accordingly design a prosody-dependent acoustic model to
improve ASR performances. We propose a variable-parameter
Hidden Markov Models, modeling the mean vector as a func-
tion of the prosody variable through a polynomial regression
model. The prosodically-adapted acoustic models are used to
re-score the N-best output from a standard ASR, according to
the prosody variable assigned by an automatic prosody detector.
Experiments on the Buckeye corpus demonstrate the effective-
ness of our approach.
Index Terms: Prosody-dependent ASR, variable parameter
HMM, re-scoring

1. Introduction
Prosody information improves word recognition accuracies in
automatic speech recognition (ASR) [1, 2, 3]. Most of the ex-
isting schemes that utilize prosody in ASR were based on sym-
bolic prosodic events, such as the presence/absence of pitch ac-
cent [1, 2], the break/non-break of prosodic word [3], and into-
national boundary types [2]. However, symbolic events are not
the only way to annotate prosody; a quasi-continuous prosodic
annotation was introduced in [4] to describe the prosody percep-
tion of untrained listeners to spontaneous speech. The promi-
nence score (P-score) or boundary score (B-score), ranging
from 0 to 1, is the fraction of listeners who hear the word as
prominent or as followed by a boundary. It implies the con-
fidence level of listeners perceiving a prosodic event and can
be interpreted as the level of prominence or the degree of dis-
juncture. Since the continuous variables inherently carry more
information than the discrete ones, we aim at finding an ad-
equate way to utilize this alternative prosodic measure to im-
prove ASR.

Speakers modulate the temporal as well as the spectral char-
acteristics of consonants and vowels in their speech to encode
prosodic structures. For example, in a series of studies, Mo
and her colleagues [4, 5, 6] demonstrated that the perceived
prominence significantly correlates with the vowel duration and
intensity and the formant measures. Considering the influ-
ence of prosody on spectral features, we propose a prosody-
dependent acoustic modeling for Gaussian Mixture Hidden
Markov Models, in which the model parameters vary as func-
tions of prosodic conditions, hence called Variable-Parameter
HMMs (VPHMM) [7]. Specifically, the mean vectors of Gaus-
sian mixture components in each HMM state are modeled as a
polynomial function of prominence scores associated with the
current utterance.

Figure 1:Diagram of the proposed ASR system.

Our idea is an extension of Fujinaga’s work [8]. In their
work, the mean vectors of Gaussian distributions were a lin-
ear function of the pitch value at the current time frame, which
improved the isolated Japanese word recognition. While they
used pitch as a proxy of prosody structure, we go further and
use a high-level prosodic variable, P-score, as the auxiliary fea-
ture. In our work, the P-scores are assigned automatically to
each word by a Support Vector Regression (SVR) method [9],
given the suprasegmental features extracted from the word and
its context. Since our automatic prosody detector requires the
word/phone boundary information for prosodic feature extrac-
tion, we employ a two-pass rescoring framework as an im-
proved ASR system (Section 2). The competitive word hy-
potheses generated from a standard ASR system are re-scored
using the prosodically-adapted acoustic models, VPHMM (Sec-
tion 3), according to the automatically-assigned P-scores (Sec-
tion 4.2).

2. Two-Pass ASR
Figure 1 illustrates the two-pass ASR scheme in therecognition
stage. The first pass generatesN -best word hypotheses using
a standard decoder, and the output includes the information of
word and phone boundaries. For each word in the hypothesis,
an automatic prosody detector extracts related prosodic features
(pitch, intensity and duration) and accordingly predicts a con-
tinuous prominence score (P-score), indicated by the number
in parenthesis under the word in the figure. The second pass
re-evaluates each word in the N-best list using a new acoustic



model (VPHMM) in which parameters are adapted through a
polynomial function of the prominence score associated with
that word. The N-best list is then re-ranked according to the
updated total scores.

During thetraining stage, a SVR-based prosody detector is
trained using a relatively small subset of transcribed data (see
Section 4.1). Also, the coefficients of the polynomial function
for each HMM state in VPHMM are estimated using maximum
likelihood criteria. Unlike conventional GM-HMMs, the re-
quired observations for VPHMM parameter estimation include
not only MFCC/PLP coefficients but also P-scores. Therefore,
SVR is also used in the training stage to assign P-scores to
words in the training set for the purpose of VPHMM training.

3. Variable-Parameter HMMs
3.1. Formulation

In conventional Gaussian Mixture Hidden Markov Models,
each phoneme is modeled as a HMM, and the observations
(MFCC or PLP vectors) in each HMM statei are modeled as
a multivariate Gaussian mixture distribution withK mixture
components,

p(xt|st = i) =
K∑

k=1

wikbik(xt), (1)

wherebik(xt) = N (xt;µik,Σik) is thek-th Gaussian distri-
bution with meanµik and covarianceΣik, andwik is the asso-
ciated weight.

In our VPHMM, the state output model still follows the
form of Gaussian Mixture distribution, except that the mean
vector here varies as a function of auxiliary variables. In this
paper, the auxiliary feature is the P-scoreyt. The value of
yt ∈ [0, 1] varies with time, determined by a prosody detec-
tor. Specifically,yt varies its value word by word, therefore
multiple frames corresponding to the same word in an utterance
share the same P-score. Consequently, the state output model
becomes a conditional Gaussian Mixture model,

p(xt|st = i, yt) =
K∑

k=1

wikbik(xt|yt), (2)

where bik(xt|yt) = N (xt;µik(yt),Σik), and µik and P-
scoreyt are related through aN -th order polynomial regression
model,

µik(yt) =

N∑

n=0

ciknyt
n
, (3)

wherecikn is aD × 1 coefficient vector corresponding to each
MFCC/PLP dimension, andyt is a scalar ranging from 0 to 1.

3.2. Parameter estimation

The parameters are estimated using the maximum likelihood
criterion. The Expectation-Maximization (EM) algorithm is
adopted similar to conventional GM-HMMs. The major dif-
ference is at the state output model; instead of mean vectors,
theN -th order polynomial coefficientscik = [cTik0 · · · c

T

ikN ]T

from Equation (3) are to be estimated. WithR training utter-
ances, the auxiliary function for the state output model in the
E-step of EM algorithm is defined as:

Qb(λ, λ
′) =

R∑

r=1

S∑

i=1

K∑

k=1

Tr∑

t=1

γ
r

t (i, k) log bik(x
r

t |y
r

t ), (4)

whereS is the number of different states,K is the number of
Gaussian components,Tr is the number of frames in utterance
r. γr

t (i, k) = p(srt = i,mr
t = k|Xr, λ′) is the probability

of being in statei and mixture componentk at time t given
the observation sequenceX of utterancer, which is calculated
using the same manner as in the conventional HMM.

The M-step maximizesQb(λ, λ
′) in Equation (4) with re-

spect tocik. Taking derivative of Equation (4) with respect to
cikn (n ∈ {0 . . . N}), we get

N∑

l=0

Aik(n, l) · cikl = bikn, (5)

where

Aik(n, l) =
R∑

r=1

Tr∑

t=1

γ
r

t (i, k) · Σ
−1
ik

· (yr

t )
(n+l) (6)

and

bikn =
R∑

r=1

Tr∑

t=1

γ
r

t (i, k) · Σ
−1
ik

· (yr

t )
n · xr

t (7)

are the accumulating statistics.
Equation (5) for alln needs to be satisfied, and conse-

quently for each statei and mixturek, a linear equation sys-
tem described in the following matrix compact form needs to
be solved:

Aikcik = bik, (8)

whereAik is aD(N+1)×D(N+1) matrix in which theD×D
block matrix at the (m+1)-th row and the (n+1)-th column is
Aik(m,n) (m,n ∈ {0 . . . N}), andbik = [bT

ik0 . . .b
T

ikN ]T .
Since our HMM system employed diagonal covariance matri-
ces, the polynomial coefficients in different dimensions can be
obtained by solving the decoupled linear system for each di-
mension d (d = 1 . . . D),

A
(d)
ik

c
(d)
ik

= b
(d)
ik

, (9)

where the superscript(d) indicates the d-th diagonal element
of each block element inAik, and the d-th dimension of each
element incik orbik.

4. Experiments
4.1. Corpus and prosody transcription

We perform our experiments on the Buckeye corpus of the spon-
taneous speech of American English [10]. For ASR experi-
ments, the speech are segmented whenever there is a turn of in-
terviewer or a silence longer than 1 second, based on the given
transcription. We randomly choose 36 speakers, from which
80% (around 15 hours) are used as the traning set for acoustic
modeling and 1636 utterances sampled from the rest of20% as
a multi-speaker test set. We leave 4 speakers for cross-speaker
experiments for future use.

For prosodic transcription, a total of about 8 minutes of
speech from each speaker ( 8 min * 39 speakers = 312 min) was
extracted. The extracted speech from each speaker was further
divided into 14 to 16 short speech excerpts (around 30 second
long per each excerpt). For prosody transcription, 37 mono-
lingual native speakers of American English from undergradu-
ate linguistics courses at the University of Illinois at Urbana-
Champaign were recruited. In a series of transcription tasks,
listeners were asked to mark the locations of prosodic promi-
nence and boundary on words in a printed transcript where all



punctuation and capitalization were removed. They were only
provided with minimal definitions of prosodic prominence and
boundary. Then they marked words heard as prominent and
words followed by a boundary in real time, while they were
listening to speech excerpts in order as said.1 Each excerpt
was transcribed by 15 untrained, non-expert listeners. Tran-
scriptions are pooled across listeners and each word is assigned
a probabilistic prominence (P-score) and boundary (B-score).
The P- and B-scores range from 0 to 1, depending on the frac-
tion of listeners who marked the word as prominent or followed
by a boundary. For example, if no listener heard a word as
prominent, then the word is assigned “0” as P-score and if all
15 listeners heard a word as followed by a boundary, then the
word is assigned “1” as B-score.

4.2. Automatic prosody detector

As of the time of this paper, the prosodic transcription for 18
out of 39 talkers are finished pre-processing and ready for use.
We partition the transcribed data into the training and test set,
with a ratio of 4:1, for automatic prosodic labeling. The test set
here is merely for the purpose of evaluation of our automatic
prosody detection method. To predict the value of P-score by a
number of prosodic features, we use Support Vector Regression
(SVR) implemented by LIBSVM [11] to learn the functional
dependence of P-score on the prosodic features. The predicted
values by SVR are then clipped to the feasible region of P-score,
[0,1].

Before feature extraction, we obtain the phonetic transcrip-
tion by forced-aligning speech to the word transcription using
a standard dictionary, the same one used for ASR such that the
phonetic classes for VPHMM training and decoding are con-
sistent. The prosodic features are then extracted based on the
obtained phonetic transcription. The features include the aver-
aged pitch, mean squared energy, and duration, as well as their
minimum and maximum value within various kinds of segments
such as the stressed vowel, the last vowel, the whole word and
the following word. The differences of pitch and energy be-
tween the current word and the following word and the pause
duration are also considered. Several pre-processing and nor-
malization schemes are applied to features:

• Pitch: fundamental frequency is obtained using ESPS
get f0 utility with its default values of 10 ms frame shift
and 7.5 ms correlation window. A median filter is ap-
plied to the logarithm of the estimation ouput for pitch
contour smoothing, followed by a local normalization
within a window of 400 ms for each frame to remove
the intonational phrase effect and the speaker effect, as
this work focuses on prominence phenomena.

• Duration- and energy-related features are z-normalized
with respect to the phone type, using data pooled from
all speakers, to minimize effects due to vowel quality.

SVR shows the squared correlation of 0.48 between P-score and
extracted prosodic features on the training set and 0.33 on the
test set. Although the correlation is not perfect, we use the same
prosodic detector to assign P-scores on both training and N-Best
data thus at least the training and test conditions for ASR have
a matched prosodic condition. It is worth mentioning that the
distribution of the predicted values are quite different from that
of the transcribed labels, as shown in Figure 2. The distribution
of automatic P-scores appear to concentrate in a lower range
(mean = 0.0881) than the transcribed ones (mean = 0.1861).

1For more details about the methodology, please refer to [4].
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Figure 2:P-score histograms in the transcription (upper panel)
and in the prediction (lower panel).

4.3. Baseline ASR

We extract 13 Perceptual Linear Prediction (PLP) coefficients,
as well as the first-order and second-order derivatives as the
front-end spectral features. The frame length is 25 ms and the
frame shift is 10ms. Cepstral mean and variance normalization
are applied per utterance. We use context-independent models
(monophones) for our baseline model as well as VPHMMs. We
choose monophones rather than triphones simply because the
triphone models would require parameter clustering for poly-
nomial coefficients in VPHMMs, which complicates the imple-
mentation of our main idea. A three-state HMM is adopted
for each monophone, the silence model and the noise model,
and an one-state HMM for the short pause model. The state
output models are Gaussian mixture models with 33 compo-
nents which all emloy diagonal covariance matrices. Since we
does not focus on language models, we train a simple language
model using both the training and testing transcription. The
word recognition accuracy for the baseline is57.30%.

4.4. VPHMM Results

We generate ten best hypotheses per utterance, and report the
rescoring results on the test set with the first- and second- or-
der mean polynomial VPHMMs (corresponding toN = 1, 2 in
Equation (3)), as shown in Table 1. The two-tailed significance
test indicates that the second order polynomial VPHMM is a
better system than the baseline at the significant level of 2.9%;
the first order polynomial is a better system at the significant
level of 5.2%. For reference, the best possible accuracy that can
be achieved from the N-Best list (N=10) is 65.59%, which is the
upper bound of the improved performance.

Table 1:Rescoring results with the first- and second-order mean
polynomial in VPHMMs.

word accuracy (%) significance level (%)

baseline 57.30 -
1st order 57.79 5.2
2nd order 57.87 2.9



Here we present an example from the rescoring results
in which the first-pass ASR errors are corrected by our
prosodically-adapted acoustic models. For this particular ut-
terance, the highest ranked hypothesis in the N-Best list of the
first-pass ASR is “um was an awful”, whereas the ground truth
“um west side off” is the third candidate in the N-best list. The
P-Scores predicted by SVR are indicated in the parenthesis after
each word:

um (0.17) was (0.26) an (0.19) awful (0.06)
um (0.22) west (0.11) side (0.20) off (0.06)

Even though the prosodic detection is independent of word
types, the predicted P-scores appear to be slightly different in
the two utterances, even for the same word (e.g. ”um”). This is
due to the different time span of phone and word segments, and
the normalization of prosodic features by different phone types.

VPHMMs in the second pass adapt the mean vectors of
Gaussian components according to the P-scores, thus adjust the
acoustic likelihood of each phone. One of the largest adjust-
ments comes from the decrease in the acoustic likelihood for
phone /z/ in the word ”was”. This is likely due to the high P-
score of phone /z/ giving rise to an adapted model, in which
a higher energy distribution in the very low frequency range
is expected, inconsistent with the actual spectrogram. As a
result, the candidate “um west side off” has the highest total
score among all hypotheses, and hence the errors in the first-
pass recognition are corrected.

5. Discussion
As rescoring improves the recognition accuracies, VPHMMs
appear to capture the variations of spectral realization caused
by the word prominence. To our best knowledge, this is the
first time that the prosody information at the level higher than
lexical stress is utilized for spontaneous speech recognition in
English2. We would like to point out a few directions which
might improve the performance of the present work:

• The automatic prosody detector built for this work is
not optimal. The prosodically-adapted acoustic models
can be made more reliable by increasing the correlation
between the predicted P-score and the true P-score. It
would be helpful to search for useful predictors for P-
score prediction in addition to the current feature set.

• We expect that modeling the effect of prosody on
context-dependent models will provide more improve-
ments than context-independent models (i.e. mono-
phones). However, the parameter clustering problem
needs to be solved, as the number of parameters for tri-
phones will be much higher than monophones.

• The current application is restricted to N-best or word
lattice re-scoring tasks, which are subject to a limited
improvement due to a fixed small search space. It is
possible to do one-pass decoding instead. For exam-
ple, the syllable boundaries can be detected in the first
pass, based on which prosodic features are extracted for
prosody detection. Then an one-pass ASR with VPH-
MMs can be directly applied.

• In addition, the prosodic boundaries (B-scores) has not
been considered in this work. However, P-scores and B-
scores are dependent on each other. Ideally one would
like to model the variation of the spectral feature distri-
bution as a function of both two prosodic variables.

2Wang et al. [12] incorporated a four-class lexical stress model for
ASR on conversational telephone speech.

6. Conclusions
In summary, we proposed variable-parameter HMMs for
prosody-dependent acoustic modeling and showed how it can
be used to improve ASR performances. We demonstrated the
effectiveness of prosody-dependent acoustic modeling on the
Buckeye corpus of the spontaneous speech of American English
by 0.49-0.57% absolute improvement of word recognition accu-
racy in a N-best rescoring task. We used one corrected first-pass
error as an example to show the contribution of prosody to ASR.
We believe that utilizing quasi-continuous prosody annotations
will be a promising direction for prosody-dependent ASR.
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