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Abstract:

Acoustic-articulatory inversion mapping is a pracebat
converts the signal of acoustic data to articulafeatures.
Most research focused on finding the best modeltHa
mapping process but less attention on finding gmaite
representation of articulatory & acoustic signalsis paper
suggests two feature extraction methods, including
Logarithm of square Hanning Critical Bank filterlka&
Discrete Wavelet Transform that have better opamain
contrast with conventional feature extraction based/el-
Frequency Cepstral coefficients. For inversion nmagp
process an standard feed forward neural networksésl.
Appling a Time Delay Neural Network for phone
recognition. The results show the efficiency of twew
feature extraction methods.

Index Terms: Discrete Wavelet Transform, Time Delay
Neural Networks (TDNNs), MOCHA-TIMIT database,
Acoustic- Articulatory Inversion Mapping, Logarithmf
square Hanning Critical Bank filterbank (LHCB), Mel
Frequency Cepstral Coefficients(MFCC)

1. Introduction

Combine articulatory features with acoustic signats
auxiliary data to improve speech recognition haeerb
very common lately. First attempt focused on usiogal-
tract models or linguistic rules data combined witioustic
features [3]. Afterward, the scientists product teorous
smooth data measuring with precision and reliable
equipments so the articualtory features that waseda
from these equipments are applideantastic results are
reported in combination of articulatory featuresthwi
acoustic representations for speech recognitioalysis
and synthesis [1,2].

The use of these equipments data as usual izssiige.
The high cost of the equipments and invasive methdke
recording process are the obstacles for using thatein
normal processTherefore, the attempts are concentrated on
estimate the articulatory movements from the adoust
signals. Estimating of articulatory movement froooastic
signals is called inversion mapping. Several edtona
methods focused on obtained the best estimatiorelmiod
such as a Trajectory Mixture Density Networks (TNK)
model [4], TMDNs with Multiple Mixtures model [5],
using a multi task learning perspective [6], mauglthe
uncertaintyin recovering articulation from acoustics [7],
using Gaussian Mixture Model (GMM) [8], accurate
recovery of articulator positions from acoustics [9] and
Hidden Markov Model (HMM)-based inversion system to
recovery articulatory movements from speech accsisti
[10]. Recently, more attempts are reported aboingus
Artificial Neural Networks (ANNs) [11, 5]. Neverthess,

there is less concentration on finding the bestasgntation
for inversion mapping process. The majority of wodn
this filed using Mel Frequency Cepstral Coefficient
(MFCC) as representation feature because of thal goo
efficacy and also easy extrication from acoustignals
with helping from HTK toolkit. But,In this article, we
focused on finding better representation for iniers
mapping process especially for using on ANNs. Ldg o
square Hanning Critical Bank filterbank (LHCB) ineoof
feature extraction method that used in [18] for egpe
recognition. Wavelet Packet and reforming Discrete
Wavelet Transform use for better extraction of
representation features from speech signals isimant
[20].

A standard Feed-forward Network (FNN) model is ufed
nonlinear inversion mapping. For comparison, we ase
Time Delay Neural Networks (TDNNs) model. Ability o
TDNN in speech recognitions has been proven [13].
Employing a special structure of TDNNs, use pastitire
inputs instead of using every input, individualiy all
neural network structures, use Backpropagation bigtw
(BPN) models with resilient optimization algorithfor
minimizing error function. In all models, traininggration

is interrupted in the best mode.

For each feature extraction methods a special rétog
model is trained. In comparison between three «iofd
feature extraction methods, the LHCB method gaist be
results. Discrete Wavelet Transform and MFCC aréhén
next rates. The results of this study show thattrhase
fundamental reconsideration in using MFCC
representations in ANN-based inversion mappinggssc

2. Speech database and pre-processing

The Multichannel Articulatory (MOCHA) database cits

of corpus of 460 TIMIT sentences of 40 differeneakers
[17]. This database includes acoustic signals, hgograph
(LAR), Electropalatograph (EPG) and Electromagnetic
articulography. Acoustic signals are recorded hyping
frequency of 16000 Hz samples per second. EMA 3$8nso
are connected to upper and lower lips, lower inc{gw),
tongue tip (5-10mm from the tip), tongue blade
(approximately 2-3cm posterior to the tongue tipsee),
tongue dorsum (approximately 2-3cm posterior to the
tongue blade sensor) and soft palate. Each of éheoss
provides x and y positions recorded from each getisd
samples at 500 Hz. Figurel shows the location ofAEM
sensors.

In our experiments we use upper and lower lip, lowe
incisor, tongue tip, tongue blade, tongue dorsuthatum
data in x and y coordinates. For acoustic reprasient
apply Logarithm of square Hanning Critical Bank
filterbanks (LHCB) representation [18]. Our expegimtal
database includes corpus of 480m onefemale speaker



of British English (subject ID “fsew”, southerniaect) in

the MOCHA database. We use 70% of the 460 sentences
and their parameters of EMA as training process 20

for testing.

Acoustic signal representations used in our expErimare
LHCB. Any representation vector containing 18 pagters

that are extracted from one speech frame which are
logarithm of energies in the Hanning type critidsnd
filter banks while bandwidth of any filter is oneark.
Frames length is 320 samples with 160 overlapping
samples. LHCB features lie in the range betweed][O,

The EMA data streams were down-sampled to 100 Hz to
synchronize parameters of LHCB. The range for each
dimension of EMA is normalized to [0, 1].

Figure 1: Position of EMA sensors in x and y coordinates

The EMA data streams were down-sampled to 100
Hz for synchronized with parameters of LHCEhe
range for each dimension BMA was normalized to
[0, 1].

3. Feature Extraction Methods:

In this section MFCC and LHCB, which are based on
Fourier transform, are presented. The other metisod
Discrete Wavelet Transform (DWT), which is based on
multi resolution theories. Wavelet is used to an@lypon-
stationary signals [20].

3.1. Discrete Wavelet Transform:
After pre-processing, a frame of signal is chosen

Afterward, three DWT of speech signal are given. The
DWT decomposition was performed up to level 6. We
eliminate high frequency component of the firstgsta
That's beacause, after 8 KHz the information ofespe
signal is negligible. In this study, db4, db10 atid 6 are
used (each obtain 6 feature$he advantage of choosing
these mother wavelets is that increasing numbezreod
moments in waveletcausemore oscillations in mother
wavelets [21]. Therefore, DWT coefficients can éett
represent speech signals. By using Parsval theotieen,
energy of each filters, is calculajetthen we use them as
train features.

3.2. Log of sgquare Hanning Critical Bank

filterbanks:
LHCB is abbreviation of Logarithm of square Hanning
Critical Bank filterbanks that has the same distanc

according to bark scale. Algorithm of this methedas the
same as MFCC, fundamental difference between MFCC
and LHCB is non-linear scale, which has been chdsen
the frequency and distribution of filters. As sefem,LHCB

and MFCC parameters the Bark scale and Mel scae ha
been used respectively.

1-Choose a frame of acoustic signal with N=320 dasp

& Remove dc amount of frame

2-Multiply frame by Hamming time domain windows
3-Calculate short time Fourier Transform of eacmie,

X(k) , Calculate spectral powgX (k)|

4-Apply filter banks of square hanning to the spact
power. ForO< k< M, DFT of a hanning

(/(K) . M is total number of filters (M=18).

filter are

5-Calculate the log energputput of each filter Ej

for j=0,1,....,1& then calculate logarithm dfj

C, =log(1+E,) "
_ M . M‘jlj (1< <
Ch %In(l Ej)m:os[m( > m 1< m< L Q)
Where L is number of coefficient in the cepstrunmam
(L=15).

4. Models:

For mapping between the acoustic signal represensat
and EMA channels, a standard FNN model with onéémid
layer is applied. This model is used for a nordine
mapping of acoustic representation features to EMA
channels. A TDNN model is used for phone recognitio
based on the articulatory and acoustic parametsrs i
obtained in inversion mapping process. For eactaetion
method used specific inversion model and specific
recognition model that obtained with find best nlode
process. All models training iteration is intgrred in the
best mode. Backpropagation Network (BPN) modeld wit
resilient optimization algorithm are used for mifing
error function.

4.1 Inversion Models:

For conversion between acoustic signal represensand
EMA channels, we apply a neural - based model that
consists of one hidden layer. For each representati
extraction, obtain best amount of neurons for MSE.

41.1. LHCB

The neural network model is a FNN. The FNN conefst
one hidden layer. Best MSE of output in this modsl
shown in figure 5 obtain in 92 neurons. The modgel i
trained with resilient backpropagation algorithm dan
training process is interrupted in the best modw®ut
vectors of the model are LHCB representations artgud
vectors are 14 features from 14 channels of EMA.

4.1.2. Discrete Wavelet Transform

The inversion model consists of one hidden layezstB
MSE of output when input data is Wavelet as shown i
figure 5 is obtained in 58 neurons. The model &n&d
with resilient back propagation algorithm and thagn
process is interrupted in the best mode. Inputoreatf the



model are LHCB representations and output vectarsld
channels of EMA.
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Figure 2: MSE of EMA (output) in different amount of
neurons when input is LHCB
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Figure 3: MSE of EMA (output) in different amount of
neuron when input is Wavelet

4.1.3. MFCC

When MFCC representation used best MSE of owput

shown in figure 4 obtained in 68 neurons. All medi

trained with resilient backpropagation algorithm dan

training process is interrupted in the best mode.
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Figure 4: MSE of EMA (output) in different amount of
neurons when input is MFCC

4.2. Recognition models:

A TDNN [19] used for phone recognition based on the
articulatory and acoustic parameters is obtaineseition

4. A TDNN is a dynamic model of artificial neural
networks which inputs and outputs vectors or both
including not only the current values but also past &
future values. In our proposed, resilient learnéhgprithm

for optimization of error function in backpropaguti
structure is used. Figure 5 shows a scheme of TDNN
model. The model uses fifteen elements of LHCB
representations and EMA value. In fact, it uses oy
each LHCB & EMA vector but also fourteen past &ufitgt
vectors of LHCB and values of EMA channels. As sule

of swapping in time over the LHCB & EMA frames, the
TDNN recognition model learns various words in rirag
process not only by their energy functions anccalitory
vectors but also by sentence context which theyised in.

Hidden Layer 2

25

Hidden Layer 1

PIS

Second LHCB frame & EMA

Gschs frame & EMA

Figure 5: The Time Delay Neural Network for recognition

Fifteen LHCB frame EM A

421 Optimized Recognition Models for

LHCB features:

In this section, a optimized neural- based recagminodel
which used LHCB representation as input is intredlic
The model includes two hidden layers. Like the paur
selection method on the section 4.2, best model for
recognition is approximated. First layer involves8 9
neurons (shown in part A of figure 6) and the seclayer
involves 70 neurons (shown in part B of figure 6).
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Figure6: MSE of output in different amount of neurons in
the first and second layers of recognition modelGn
iteration when input is LHCB

4.2.1 Optimized Recognition Modelsfor DWT

features

An optimized neural- based recognition model, whisked
DWT representations as input, is introduced. Triolel
includes two hidden layers. Like the neuron sebecti
method on the section 4.2, best model for recagmits
approximated. First layer involves 78 neurons (ghaw
part A of figure 7) and the second layer involVE33
neurons (shown in part B of figure 7).

Figure 7. MSE of output in different amount of neurons in
the first and second layers of recognition mouhe40
iteration when input is wavelet



Table 1: Comparison of recognition results when used
different representations as input in inversion eiod

Recognition modes Recognition accuracy

TDNN train with LHCB &EMA of
MOCHA and test with LHCB with
axillaries data(EMA) that is obtained
from related inversion model

TDNN train with Wavelet &EMA of
MOCHA and test with Wavelet with
axillaries data(EMA) that is obtained
from related inversion model
TDNN train with MFCC &EMA of
MOCHA and test with MFCC with
axillaries data(EMA) that is obtained
from related inversion model

62.09

61.38

59.72

4.2.1 Optimized Recognition Models for

MFCC packet features

An optimized neural- based recognition model Wwhised
DWT representation as input is introduced. Thed@ho
includes two hidden layers. Like the neuron sebecti
method on the section 4.2, best model for recagmits
approximated. First layer involves 93 neurons (shad
part A of figure 8) and the second layer involve® 7
neurons (shown in part B of figure 8).

Figure 8. MSE of output in different amount of neurons in
the first and second layers of recognition model4h
iteration when input is MFCC

5. Experimental results:

When using the LHCB representations as input for
inversion model and pass the output of this m@aMmA)

as auxiliary data to related phone recognition rhothe
accuracy was 62.09%. The DWT representations [as in
for inversion model and use the output of thisdelo
(EMA) as auxiliary data in related phone recogmitio
model, the accuracy descend to 61.38%. Finallg us
MFCC representations and use the output of thisemod
(EMA) as auxiliary data in related phone recogmitio
model. , the accuracy was 59.72%. Table 1 shows the
comparison of phone recognition accuracy in differe
models.

6. Discussion:

This research shows the power of LHCB represemtstio

and DWT representations in comparison with common
feature extraction (MFCC). This paper based on aleur

network models and there would be test in otheerision
mapping models in the future.
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