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Abstract: 
In this paper, a new bidirectional neural network for better 
acoustic-articulatory inversion mapping is proposed. The 
model is motivated by the parallel structure of human brain, 
processing information by having forward-inverse 
connections. In other words, there would be a feedback 
from articulatory system to the acoustic signals emitted 
from that organ. Inspired by this mechanism, a new 
bidirectional model is developed to map speech 
representations to the articulatory features. In comparison 
with a standard  model,  the output of bidirectional model 
as auxiliary data in phone recognition process,  increases 
the accuracy up to approximately 3%.  
 
Index Terms: Bidirectional Neural Networks (BNNs), 
Feed-Forward Networks (FFNs), Time Delay Neural 
Networks (TDNNs), MOCHA-TIMIT database, Acoustic- 
articulatory inversion   mapping 
 

1. Introduction 
Automatic Speech Recognition (ASR) is strongly 
concentrated on the use of acoustic representations of 
speech as input data. Speech engineers believe that the 
acoustic signals of speech are the most important means of 
communication between humans. However, articulatory 
movements have meaningful correlation with acoustic 
energies, emitted from the corresponding organ. Combined 
with acoustic representations, this data generates excellent 
results for an enhanced speech recognition, analysis, and 
synthesis [1]. For example, some efforts for using 
articulatory features  in quest of having better speech 
recognition can  be observed in [1,2].  

Before the first attempts to produce the suitable articulatory 
gesture with reliable and precise equipment, researchers 
used vocal-tract models or linguistic rules [3]. Today we 
have continuous smooth data measuring with sophisticated 
equipment. However, the use of such equipment is 
impossible due to their high cost and complications. 
Therefore, the efforts are focused on a method to estimate 
the articulatory features from the acoustic signals. Various 
estimation methods and their challenges have been a 
fundamental topic for research in this decade. Some efforts 
in the mapping of acoustic to articulatory features are  a 
Trajectory Mixture Density Networks (TMDNs) model [4], 
TMDNs with multiple mixtures model [5], multi task 
learning perspective [6], modeling the uncertainty in 
recovering articulation from acoustics [7], Gaussian 
Mixture Model (GMM) [8], accurate recovery of 

articulatory positions from acoustics [9],  and Hidden 
Markov Model (HMM)-based inversion system to recovery 
articulatory movements from speech acoustics [10]. 
Recently, more attempts are reported about using Artificial 
Neural Networks (ANNs) [11, 5]. Moreover, human 
perception system shows that it has a bidirectional structure 
[19-24]. Therefore, in this paper we focused on a nonlinear 
mapping between the acoustic representations of speech 
and the articulatory features by the use of a new 
Bidirectional Neural Network (BNN) model. This network 
is inspired by the parallel structure of human brain, 
processing information by having forward-inverse 
connections. In this method, primary recognition is 
accomplished by reliable regions. Unreliable regions are 
corrected afterwards. This action is iterated until the 
recognition is completed and the primary recognition is 
modified to the final recognition (fix point).  
One of the prominent theories that explains these 
connections is Motor Articulatory Feedback theory [12]. 
According to this hypothesis, there is a biological feedback 
from the acoustic signals of speech to the human 

articulators. This feedback is controlled by the brain and 
makes the speech chain a closed-loop process. Motivated 
by this hypothesis, we aim to implement an adaptive neural 
network model having a successful inversion mapping 
process. The Proposed model offers higher accuracy in 
comparison with a standard Feed-Forward Network (FFN) 
model.  
Several reports confirm the capability of Time Delay 
Neural Networks (TDNNs) in phone recognition process 
[13]. In this study, we successfully employ a special 
structure of TDNN for recognition processes. We use past 
and future inputs instead of using every input, individually. 
Briefly, Both FFN and BNN models apply to map acoustic 
representations of speech to Electromagnetic 
articulography (EMA) features and then pass the outputs of 
these models to the TDNN model for better phone 
recognition. In all neural network structures proposed in 
this study, the resilient optimization algorithm is used to 
minimize error function 

2. Motor-Articulatory Feedback theory 
Motor-Articulatory Feedback theory is a neural-based 
theory that explains reason of Alphabetic system disorder 
in phonological dyslexia. Dyslexia is a disability 
characterized by difficulty with reading  text. This disorder 
includes at least two prominent subtypes; surface dyslexia 
(individuals can’t correctly utter the irregular words) and 



phonological dyslexia (individuals can’t correctly utter 
non-words) [14, 15] which the latter is more common [14]. 
Phonological dyslexia is diagnosed in individuals who 
can’t use the Alphabetic system (learning the speech 
sounds that are related with letters), so they can’t correctly 
utter non-words. 
Indeed, patients have problem in making connection 
between sounds and Alphabetic symbols [12]. This reading 
disorder might be related to different neuropsychological or 
neurobiological pathologies [15]. Many different theories 
have attempted to explain the disorder, one of which is 
Motor-Articulatory Feedback theory. 
According to the theory, awareness of the positions and 
movements of articulatory system (lip, tongue and jaw) 
would allow normal individuals to parse a word into its 
component phonemes. In phonological dyslexia, patients 
are not aware of the positions and movements and are 
unable to utter a specific word [16]. Therefore, there would 
be a feedback between articulatory system and brain of 
normal individuals and by using this feedback, better 
speech perception is probable and they could utter a word 
correctly. In other words: Normal individuals have a 
bidirectional association between heard acoustic signals 
and articulatory movements. This association is controlled 
by brain. Inspired of this human perception operation, we 
propose a bidirectional neural network model for the 
acoustic-articulatory inversion mapping. 
 

3. Speech database and pre -processing 
The Multichannel Articulatory (MOCHA) database 
consists of corpus of 460 TIMIT sentences of 40 different 
speakers [17]. This database includes acoustic signals, 
Laryngograph (LAR), Electropalatograph (EPG) and 
Electromagnetic articulography. Acoustic signals are 
recorded by sampling frequency of 16000 Hz samples per 
second. EMA sensors are connected to upper and lower 
lips, lower incisor (jaw), tongue tip (5-10mm from the tip), 
tongue blade (approximately 2-3cm posterior to the tongue 
tip sensor), tongue dorsum (approximately 2-3cm posterior 
to the tongue blade sensor) and soft palate. Each of the 
sensors provides x and y positions recorded from each 
sensor that samples at 500 Hz. Figure1 shows the location 
of EMA sensors.  
In our experiments we use upper and lower lip, lower 
incisor, tongue tip, tongue blade, tongue dorsum and velum 
data in x and y coordinates. For acoustic representation, 
apply logarithm of energies in the Hanning type critical 
band filter banks (LHCB) representation [18]. Our 
experimental database includes corpus of 460 from one 
female speaker of British English (subject ID ‘‘fsew’’, 
southern dialect) in the MOCHA database. We use 70% of 
the 460 sentences and their parameters of EMA as training 
process and 30% for testing. 
Acoustic signal representations used in our experiments are 
LHCB. Any representation vector containing 18 parameters 
is extracted from one speech frame which is logarithm of 
energies in the Hanning type critical band filter banks while 
bandwidth of any filter is one bark. Frames length is 320 
samples with 160 overlapping samples. LHCB features lie 
in the range between [0, 1]. 

The EMA data streams were down-sampled to 100 Hz to 
synchronize with parameters of LHCB. The range for each 
dimension of EMA is normalized to [0,1]. 

 
Figure1: Position of EMA sensors in x and y coordinates  

 

4. Inversion models 
For using Motor-Articulatory Feedback theory in 
conversion between acoustic representations (LHCB) and 
EMA features, we proposed a BNN model inspired from 
feedback between articulatory system and the acoustic 
energy of speech signals that are uttered by human. This 
feedback is controlled by brain as mentioned in section 2. 
Proposed BNN model consists of two parts: Forward part 
and reverse part. The former is used for a nonlinear 
mapping of LHCB representations to EMA features and the 
later provides a nonlinear conversion of EMA features to 
LHCB representations. To fix EMA and LHCB parameters, 
6 rotation between the inputs and outputs are performed. In 
all models, training iteration process is interrupted in the 
best mode. 
 
4.1. Feed Forward Network model  
The first neural network model is a standard FFN that is 
designed in comparison with bidirectional model. The FFN 
consists of one hidden layer. Best MSE of output in this 
model as shown in figure 2 is obtained while hidden layer 
involves 92 neurons. The model is trained with resilient 
backpropagation algorithm. Input vectors of the model are 
LHCB representations and output vectors are 14 features 
from 14 channels of EMA.  
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Figure2: MSE of EMA (output) in different amount of 
neurons in the hidden layer of FFN in 40 iteration  



4.2. Bidirectional Neural Network model  
Second model which is proposed, is a bidirectional 
(forward-reverse) model. The model is consist of  two 
standard networks  in reverse structures and tries to get 
closer to the performance, flexibility, correctness and 
reliability of the human auditory system. At forward part 
we have a nonlinear mapping from LHCB representations 
to EMA features. Afterward, by using a reverse part, we 
provide a nonlinear mapping from EMA features to LHCB 
representations. A general structure of the two networks is 
shown in Figure3. As mentioned in section 4.1, the forward 
part uses one hidden layer perceptron with 92 neurons. The 
reverse part is designed in two hidden layer because we 
want to map 14 EMA features to 18 LHCB representations 
and this mapping is harder than forward part. To obtain 
optimized neurons in the first layer,  we examine from 1 to 
128 neurons. In other words: Put second layer 64 neurons 
and test the different amount of neurons in  the first layer 
(shown in part A in figure 4).Then with the best neuron 
selection for  this layer, examine second layer (Shown in 
part B in figure 4). Therefore, first layer involves 93 
neurons and second layer involves 70 neurons. Just like the 
FNN, resilient backpropagation algorithm is used for 
optimizing the error function.  
The outputs of forward section are passed as reverse part 
inputs and vice versa, respectively. After performing 6 
rotation between forward and reverse parts, the EMA and 
LHCB parameters is fixed. 
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Figure 3: General structure of BNN model for the 

acoustic-articulatory inversion mapping 
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Figure 4: MSE of EMA (output) in different amount of 

neurons in the first and second hidden layers of reverse part 
of BNN  model in 40 iteration 

5. Recognition model 
A TDNN is used for phone recognition based on the 
articulatory and acoustic parameters are obtained in section 
4.1 & 4.2. A TDNN is a dynamic model of artificial neural 

networks which inputs or outputs vectors or both including 
not only the current values but also the past and future 
values. 
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Figure5:  MSE of output in different amount of neurons in 
the first and second layers of TDNN model  in 40 iteration 

In our proposed TDNN, there are just inputs swapping in 
time. The model includes two hidden layers. Like the 
neuron selection method on the section 4.2, best model is 
approximated. First layer involves 93 neurons (shown in 
part A of figure 5) and the second layer involves 70 
neurons (shown in part B of figure 5). Resilient learning 
algorithm for optimization of error function in 
backpropagation structure is used. Figure 6 shows a general 
structure of TDNN model.  The model uses fifteen 
elements of LHCB representations and EMA value. In fact, 
it uses not only each LHCB & EMA vector but also 
fourteen past & future vectors of LHCB and values of 
EMA channels. As a result of swapping in time over the 
LHCB & EMA frames, the TDNN recognition model 
learns various words in training process not only by their 
energy functions and articulatory vectors but also by 
sentence context which they are used in. Actually,   FFN 
and BNN models prepare different mapping of EMA 
channels for applying as auxiliary input in the phone 
recognition model.  
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Figure 6: A general structure of Time Delay Neural 

Network   

6. Experimental results 
In comparing, a base TDNN is introduced that only use 
LHCB as input. The accuracy was 53.11%. When using the 
FFN model for producing EMA from LHCB and passing 
output (EMA) as auxiliary data beside the acoustic 
representation for phone recognition, the accuracy was 
62.09%. By using proposed BNN model for this inversion 
mapping, and passing output (EMA) of this model as 
auxiliary data to TDNN model, accuracy of phone 



recognition rate is improved up to 64.18%. Afterward, 
passing output (EMA) data and input data (LHCB) of BNN 
to the phone recognition model, the accuracy rate is 
increased again up to 64.91. Table 1 shows the comparison 
of phone recognition accuracy in different models. 

Table 1. Comparison of recognition results with different 
models 

7. Conclusion and future work 
Human perception system shows that it has a bidirectional 
structure. When a individual utters a word, it would be a 
feedback from acoustic signals emitted from speech organs 
and articulatory movements of these organs so with 
iteration in feedback between heard acoustic signals and the 
sense of articulatory movements, learning process is placed 
in the best training mode (fix point). The paper has aimed 
simply to establish this theory in the structure of ANNs and 
introduce a new BNN. Actually, the feedback between 
articulators and heard acoustic signals is used on the 
structure of bidirectional model as forward and reverse 
parts. The method is compared with a FFN model. It gets 
higher accuracy in speech recognition process when we use 
BNN model in acoustic-articulatory inversion process 
instead of standard FFN and pass the outputs as auxiliary 
data to the phone recognition network (TDNN). This 
method can be used for speaker-independent recognition if 
the suitable databases were available. Also this way could 
be used in any kind of inversion mapping methods such as 
HMM-based and others in the future .  
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Recognition  accuracy 
                                   

    

Recognition model 

53.11 TDNN train with LHCB of MOCHA and 
test with LHCB of MOCHA 

68.73  TDNN train with LHCB &EMA of 
MOCHA  and test with LHCB &EMA of 
MOCHA  

62.09  TDNN train with LHCB &EMA of 
MOCHA  and test with LHCB of 
MOCHA and the   auxiliary data(EMA) 
that is obtained from FFN model   

64.18  TDNN train with LHCB &EMA  from 
MOCHA and test with LHCB of 
MOCHA and the auxiliary  data(EMA) 
that is obtained from bidirectional model 
after 6 rotations   

64.91  TDNN train with LHCB &EMA of 
MOCHA  and test with  auxiliary data 
(LHCB & EMA) that is obtained from 
bidirectional  model after 6 rotations  


