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Abstract

Appropriate phoneme durations are essential for high qual-
ity speech synthesis. In hidden Markov model-based text-to
speech (HMM-TTS), durations are typically modeled statist
cally using state duration probability distributions andrat
tion prediction for unseen contexts. Use of rich context fea
tures enables synthesis without high-level linguisticklezlge.

In this paper we analyze the accuracy of state duration mod-
eling against phone duration modeling using simple predic-
tion techniques. In addition to the decision tree-baseti-tec
niques, regression techniques for rich context featurésigh
collinearity are discussed and evaluated.

1. Introduction

Accurate prediction of phone durations is essential fohhig
quality text-to-speech (TTS). The use of unsuitable phanem
durations can deteriorate synthesis quality by decreasing
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and the selection of the important ones is done automaticall
during prediction model training.

It is impossible to include all the rich context feature com-
binations of a language in the training data. For exampléeén t
case of 1000 features, in theory, there 2r¥0 different feature
combinations. Therefore, a mechanism for the predictiamef
seen combinations must be provided. This is typically done b
employing clustering of trained models. In HMM-TTS, a deci-
sion tree using minimum description length (MDL) differenc
as a cluster splitting criterion [6] is employed. The questi
set determining the possible splits contains a large amofunt
binary yes/no questions about the model representatioadin
dition to the prediction of unseen models, the use of modsst-cl
tering decreases the TTS system footprint and also alevthe
effect of outliers present in the training data.

In this paper we evaluate the accuracy of different simple
duration prediction techniques for an English and a Finnish
speech database. In addition to the MDL-based cluster-

perceived speech naturalness. In some languages, such as ining, regression techniques for rich context features witihh

Finnish, phoneme quantity has a distinctive phonologiotd r
denoting that short and long phoneme quantities convegrdiff

collinearity are discussed and evaluated. Furthermorearvee
lyze the structure and the characteristics of the binaty cimn-

ing meanings. Hence, using an unacceptable phone duration text feature matrix.

can even change the meaning of a word.
Hidden Markov models (HMMs) provide a flexible frame-
work for statistical parametric speech synthesis. HMMelohs
TTS (HMM-TTS) [1] uses HMMs for modeling a given speech
database, and further, for generating speech represamdatbr-
responding to the input phoneme sequences.

tation of the speech database is constructed and duringhe s

Two separate
phases are included. In the training phase, an HMM represen-

The paper is organized as follows. In Section 2 and 3, the
duration modeling and prediction in HMM-TTS are described.
The analysis of the duration prediction accuracy is presbint
Section 4. Section 5 concludes the paper.

2. Duration modelingin HMM-based TTS
The duration of a phoneme is typically modeled through HMM

thesis phase, required models are concatenated and a parame state durations: each context-dependent phoneme is naoaiele

terization for the synthetic speech is generated using étieeo
speech parameter generation algorithms [2].

In addition to spectrum modeling, in HMM-TTS, HMMs
are used to model prosodic features. In this paper we focus
on duration modeling. Explicit models are not typically dse
in HMM-TTS, although it would be possible to utilize for ex-
ample CART (classification and regression tree) [3], matiiv
ate regression, Bayesian networks [4] or artificial neuett n
works [5] for phone duration modeling. Instead, prosodyrés c
ated through the use of context dependent training and a rich
context feature representation. This representationvegmot
only context phone identities but also a large number ofrothe
phonetic and linguistic features. One major differenceht® t
conventional duration modeling is that in HMM-TTS phoneme
durations become modeled through combining HMM state du-
rations. Another major difference is that the conventiotha
ration models usually employ a relatively small set of calfgf
selected features while HMM-TTS relies on the use of a very
large set of less sophisticated context features, say 1600-
binary features. Not all the features are important or éiffec

a sequence of states and the duration of the states is modeled
A state transition probability denoting a probability of wiag

from one state to another is determined. Typically, leftight
models with no state skips are used, hence the transitidrapro
bility for the transitions to other states except for thddaing

state and the state itself are set to zero.

To model the state durations for synthesis, duration proba-
bility distribution for each state is determined. In HMM-$T
duration modeling the distributions are formed based on the
statistics from HMM parameter re-estimation [7]. Each estat
duration probability distribution is regarded as a singlau&-
sian with a certain mean and variance. The mean and variance
are extracted based on the average of all possible duratanos
of them weighted with the corresponding state occupandy-pro
ability (i.e. probability of occupying the given state chgithe
given time interval).

In HMM-based modeling, duration distributions are used
in synthesis but they are not explicitly present in HMM pa-
rameter estimation. The state transition probabilitiestid
the state durations instead. A more accurate modeling can



be achieved using hidden semi-Markov model (HSMM)-based
techniques [8]. In HSMM-based modeling, the duration distr
butions are explicitly present already in HMM training.

3. Methodsfor duration prediction
3.1. Decision tree-based clustering and MDL

Decision trees are popularly used for many reasons. First of
all, they are non-parametric and suitable for modelingedéht
kinds of input data. Secondly, they can give rather accyrage
dictions despite outliers and redundant input data. Furibee,
they are intuitive and thus easily understandable. Detisize

can be a regression or classification tree. Since phoneidarat
is a continuous target variable, it is modeled by a regressio
tree. One problem related to the trees is that they do not have
interpolation properties and thus the modeling of raresinses

is prevented. Another problem for duration modeling is disc
tinuity, a pruned tree with a small amount of data can givieenat
distinct values for phone durations.

One issue that needs to be considered in tree building is the
termination criterion for data splitting. Usually the trisefirst
grown into its maximal depth and then pruning is carried out
using the optimal configuration given by cross-validatibiev-
ertheless, cross-validation is computationally demagdihus
some alternative splitting criteria have been developeth 515
splitting based on MDL criterion.

In MDL-based decision tree clustering [6], both the acous-
tic similarity of a data cluster and an observation as wethas
complexity of the resulting tree are taken into account miyri
the tree construction. Contrary to the traditional decidi®e
clustering techniques, MDL-based tree construction cemite
nate unassisted when the optimal model for the data has been
found. The tree construction algorithm starts with a ondeno
tree with all the data in one tree node and progresses instage
by selecting one node at a time to be split using a question se-
lected from a given question set. In HMM-TTS, the data to be
clustered consists of model distributions and the giverstjoe
set of binary rich context feature questions. To providal#é
phone-level duration models, the state duration distidimst of
a phoneme are clustered together unlike in clustering aéroth
model features, where the distributions are clustereé\wstaé.

Each node-question pair is selected to minimize the de-
scription length of the resulting decision tree. Descapti
lengthl(U) of a modelU is defined as [6]

M
1
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+ KMlogW + C

whereI',,, denotes the total occupancy count at nétie, K
the dimensionality of the data vectat,,, the covariance of the
Gaussian distribution at nods,,, andC a fixed constant value.
W =M T, whereM is the total number of leaf nodes
in U. Splitting nodeS,, into two nodesSy, 4y andSy,q» results
in a new modelU” with M + 1 leaf nodes. The best split is the
one that minimizes the differenee,, (q)

Am(q) =U(U") = 1(U)
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subscript indicesngy and mgn indicating theyes and no
branches of the split model starting from the ndtlg. For each

)

leaf-node, all possible questions are considered and tHe-no
question pair minimizing the description length differens se-
lected, assuming the difference to be less than zero. iBplit
repeated until there are no possible nodes left for spdjttin

3.2. Multivariateregression

Regression analyzes the relationship between two vasakle
andY’, and constructs a model to describe it. The least squares
solutions for the linear multivariate regression problem i
f=x"X)"x"Y (3)
where X isnxp matrix of predictors and Y isixk matrix of
responses. They are both centered to zero-mean.
Multicollinearity is a term used to describe a situation
where two or more variables iX correlate with each other.
This can affect the matrix rank. The matrix rank means a max-
imum number of linearly independent rows &f. Rich-context
features in HMM-TTS exhibit strong multicollinearity, fan-
stance the featurtndex of the syllable in the sentenee 12
is likely to correlate with the featurdadex of the syllable in the
sentence< 11. Although there may be instances that fulfill only
the first condition, they may be rare if the sentences aretshor
Multicollinearity can result in a singulaX 7 X term and further
leading to a model that is still unbiased but results in higims
dard deviation of the prediction error. In Section 4 we analy
the feature matrix ranks for an English and a Finnish datbas
Multicollinearity can be tackled by taking a pseudoinverse
of XTX in Eq. 3. It is based on singular value decomposi-
tion; all the singular values that are below a certain thoésh
are omitted. Furthermoreidge regressioris another alterna-
tive technique coping with multicollinearity. It adds a stant
term to the covariance matrix as
B=X"X+A)"'X"Y 4)
where) is a biasing or ridge parameter afds an identity ma-
trix. Ridge regression attenuates the effect of lowerarae
components and results in a biased estimate but can give lowe
prediction error. The ridge parameter can be chosen by cross
validation. Several methods for determiniichave been pro-
posed e.g. [9].

4. Experiments
4.1. Speech databases and context features

The aim of this paper is to analyze the effect of different du-
ration prediction methods in the framework of HMM-TTS.
The data used for the evaluations consisted of two manu-
ally annotated male speech databases. For English, a pub-
licly available database CSTR US KED Timit (available at
http://festvox. org/dbs/ dbs_kdt . ht m ) containing 450
utterances was used. For Finnish, a prosodically rich daeb
of 650 utterances was used. Separate prediction questisn se
for English and Finnish were employed. The question set
for English is presented in [1]. The Finnish question set was
slightly modified from the English set; part-of-speech and a
cent were left out while some additional phoneme identity-
related features were included.

For Finnish, long phoneme quantities were found problem-
atic in terms of duration. For the speech parameter modgling
is justified to use the same model for short and long phoneme
quantities. However, in duration modeling the situatiomizre
complicated since duration of a long phoneme cannot be dkfine



simply as a combination of the duration of two short ones. For
Finnish, long vowels were modeled as one phoneme, separate
from the corresponding short phonemes. Models of long vow-
els were still initiated using initial models of the corresypling

short phonemes. The high number (18) of diphthongs ocayirrin

in Finnish prevents their modeling as a single phoneme;igiinn
diphthongs were modeled as two separate phonemes while the
English diphthongs were treated as a single phoneme.

The statistics for the English and Finnish database aregive
in Table 1 and Table 2, respectively. In the tables, All refer
to consonants, vowels, and pauses, i.e. all phoneme istanc
in the database. Further, separate analysis for consoaadts
vowels was carried out, the results being presented in tiiesa
as well. The number of non-zero features refers to the number
of those features that do not have all the instances either tr
or false. For example, when considering only consonanés, th
questionls the current feature vowés false for every instance
and thus it is removed. In addition, we calculated the matrix
ranks for each case. As can be seen, the rank is much lower
than the number of non-zero features, indicating high we#i-
ity. Extraction of principal components for the Finnish alag-
vealed that the first 250 components were able to explain 97%
of the variance.

Table 1:Database and feature matrix statistics for the English
database. See the text for a more detailed description.

Instances Features Non-zeros  Rahk
All 14 627 1339 1212 566
Consonants| 8304 1339 1102 496
\Vowels 5423 1339 1090 483

Table 2:Database and feature matrix statistics for the Finnish
database. See the text for a more detailed description.

Instances Features Non-zeros Rahk
All 45 065 1378 1140 492
Consonants| 23182 1378 1035 463
Vowels 19994 1378 1016 451

uations at phone level. The accuracy was evaluated by com-
paring predicted values to the reference durations givethey
Viterbi alignment. In addition, prediction accuracy for ma
ually labeled durations was evaluated separately fromrivite
alignment results.

Consonants and vowels were evaluated separately. For
both, the training data was divided randomly into five subset
and the sets were kept fixed for all three categories. Onessubs
was used as test data and the rest as training data. This was re
peated for all of five subset divisions in a way that each phone
was included exactly once in a test data set. In order to pteve
the distortion caused by annotation outliers, a rough appra-
tion for detecting them was used and they were removed before
dividing the data into subsets. The phones with a manually la
beled duration differing from the duration mean value by enor
than five standard deviations were removed.

The evaluation results are presented in tables 3-5. In
the results, CART refers to a decision tree-based predictio
using 10-fold cross-validation for tree pruning. Regressi
refers to multivariate regression of Eq. 3 using a pseudoin-
verse of X7 X. For ridge regression of Eq. 4, ridge parameter
A= (X, €e)/ ((n—p)>t_, B7) [9]is used. Herer, p,

Bi, ande; denote the number of samples, number of features,
regression-based prediction, and resulting predictioorere-
spectively. MDL refers to MDL-based decision tree clustgri

of Eq. 1-2. For the regression-based techniques, eachréeatu
was required to have at least 1% of the instances to be ttse/fa
otherwise the feature was ignored.

The prediction accuracy for Viterbi-based phone durations
is presented in Table 3. For both English and Finnish vow-
els, ridge regression was able to provide the lowest roothmea
square error (RMSE) value and the highest (pseutfoyalue
indicating the level of correlation between predicted asfenr-
ence durations for the test data. For English consonarftsr-di
ence of the prediction accuracy of MDL and regression-based
techniques was negligible, CART-based approach produbig
lowest accuracy. For Finnish consonants, the best accwasy
provided by MDL and CART-based techniques.

Table 3: Phone duration prediction error for the speech
databases using phone durations from Viterbi alignmente Th
average number of leaf nodes is given in parenthesis for both

4.2. Modd training and state alignment

For duration prediction, explicit state durations wereedet
mined. To get the state alignment for each database phoneme,
left-to-right HSMM models with no state skips were trained u

ing the HMM-based speech synthesis system (HTS) [10], ver-
sion 2.1. For speech parameterization, Mel-cepstral aiexfiis

of order 39 with the dynamic features were used.

State durations of the speech data were estimated by Viterbi
state alignment using the trained models. HSMM models were
converted into HMMs by estimating the probabilities of etat
transitions. For each phone, a manually labeled quinphone ¢
text was taken into account and the alignment was allowed to
move the context phone boundaries.

4.3. Evaluation of the duration prediction accuracy

The methods of Section 2 were compared in terms of duration
prediction accuracy. The comparisons were carried outrieth
different categories: 1) Viterbi phone alignment 2) Vitestate
alignment and 3) manual phone durations. Both phone aral stat
durations from Viterbi alignment were considered in theleva

languages.

English Finnish
RMSE (ms) R? RMSE(ms) R?2

Consonants

CART (45,63) 24.9 0.50 243 0.40

Regression 24.1 0.53 25.0 0.37

Ridge regression 24.0 0.53 25.0 0.37

MDL (145,231) 24.1 0.53 24.3 041
Vowels

CART (20,40) 30.3 0.50 25.6 0.51

Regression 28.4 0.53 24.6 0.54

Ridge regression 28.0 0.55 245 0.55

MDL (116,205) 29.5 0.50 25.1 0.52

For the state-level Viterbi durations, three of the predic-
tion methods were considered: regression, ridge regmnessio
and MDL-based tree clustering. The evaluation was done at
phone-level, and the phone durations were obtained by sum-
ming over the five predicted state durations. Asin Viterthpé
duration prediction, regression-based techniques oiatpeed
MDL-based tree clustering for the vowels of both languages,
ridge regression providing the lowest RMSE and highst



value. For consonants, RMSE differences were smallergeridg
regression resulting in the lowest RMSE for English constsia
and MDL-based clustering for Finnish consonants.

Table 4: Phone duration prediction error for the speech
databases using state durations from Viterbi alignmente Th
average number of leaf nodes is given in parenthesis for both
languages.

English Finnish
RMSE (ms) R? RMSE(ms) R?2

Consonants

Regression 24.2 0.52 24.9 0.37]

Ridge regression 239 0.53 24.9 0.38

MDL (148,262) 24.7 0.50 244 0.40
Vowels

Regression 28.5 0.53 24.6 0.54

Ridge regression 28.0 0.55 245 0.55

MDL (96,258) 30.6 0.46 26.4 0.47,

In addition to the state and phone durations from Viterbi
alignment, the prediction techniques were also appliechéo t
manually assigned phone durations. Prediction errors dtin b
databases and each method are displayed in Table 5. For En-
glish and Finnish vowels and Finnish consonants, regressio
based techniques produced the most accurate predictiams. F
English consonants, the accuracy differences between €ART
based and regression-based prediction techniques weye ver
small. The results for the English database are rather well i
line with the results presented in [3].

Table 5: Phone duration prediction error for the speech
databases using phone durations from manual alignment. The
average number of leaf nodes is given in parenthesis for both
languages.

English Finnish
RMSE (ms) R? RMSE(ms) R?2

Consonants

CART (37,58) 20.6 0.54 16.9 0.64

Regression 20.8 0.53 16.4 0.66

Ridge regression 20.7 0.54 16.4 0.66

MDL (132,216) 21.7 0.48 16.6 0.65
Vowels

CART (22,55) 25.1 0.55 18.0 0.66

Regression 23.8 0.60 17.3 0.68

Ridge regression 232 0.61 17.3 0.68

MDL (77,237) 27.1 0.47 17.6 0.67

In general, the regression-based prediction methods were
able to provide more accurate duration prediction compssed
the tree-based prediction methods. For consonants, agcura
differences were rather small and the prediction technjzroe
viding the best accuracy varied. This can indicate that fov-v
els, a global prediction model might be formed, while conso-
nants are more challenging in terms of duration predictitm.
further increase the accuracy of consonant duration ptiedic
consonant subsets could be formed in order to build better pr
diction models from the data.

Phone-level durations are prosodically better motivated
units than state-level durations. This could be exploitedi®
ing proportional state durations to predict the statedlelea-
tions, but predict the phone durations directly using phiewvel
models. Currently in HMM-TTS, only state-level durations a
employed. In the evaluations, MDL-based clustering turmetd

to produce less accurate predictions for the the Viterlgred
state durations compared to the Viterbi aligned phone st
For regression-based techniques, RMSE differences &f sitat
phone-level predictions were negligible.

5. Conclusions

In this paper, we have studied the duration modeling accu-
racy in HMM-TTS. The evaluations included tests on English
and Finnish speech data using simple and straightforwatd te
niques (CART, MDL-tree, pseudoinverse regression, angerid
regression). Phone duration prediction was evaluated)imith
phone and state durations received from the Viterbi alignrog
the training data. In addition, manually labeled databdemp
durations were considered. The results indicate, that dar-v
els, the regression-based techniques outperform the Misled
tree clustering traditionally used in HMM-TTS while for con
sonants, the method providing the best accuracy varies.

This paper has studied duration modeling using objective
measurements only. Although the preference for objectistst
has been clear in the literature studying duration modeting
authors acknowledge the fact that objective metrics may not
reveal all the perceptual effects. Nevertheless, in the cdis
HMM-TTS, it is not straightforward to arrange meaningfig-li
tening tests because it is not possible to isolate the perakp
effects caused by duration changes. Thus, we considered-obj
tive tests to be more meaningful for the purpose of this paper
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