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Abstract
Appropriate phoneme durations are essential for high qual-
ity speech synthesis. In hidden Markov model-based text-to-
speech (HMM-TTS), durations are typically modeled statisti-
cally using state duration probability distributions and dura-
tion prediction for unseen contexts. Use of rich context fea-
tures enables synthesis without high-level linguistic knowledge.
In this paper we analyze the accuracy of state duration mod-
eling against phone duration modeling using simple predic-
tion techniques. In addition to the decision tree-based tech-
niques, regression techniques for rich context features with high
collinearity are discussed and evaluated.

1. Introduction
Accurate prediction of phone durations is essential for high-
quality text-to-speech (TTS). The use of unsuitable phoneme
durations can deteriorate synthesis quality by decreasingthe
perceived speech naturalness. In some languages, such as in
Finnish, phoneme quantity has a distinctive phonological role
denoting that short and long phoneme quantities convey differ-
ing meanings. Hence, using an unacceptable phone duration
can even change the meaning of a word.

Hidden Markov models (HMMs) provide a flexible frame-
work for statistical parametric speech synthesis. HMM-based
TTS (HMM-TTS) [1] uses HMMs for modeling a given speech
database, and further, for generating speech representations cor-
responding to the input phoneme sequences. Two separate
phases are included. In the training phase, an HMM represen-
tation of the speech database is constructed and during the syn-
thesis phase, required models are concatenated and a parame-
terization for the synthetic speech is generated using one of the
speech parameter generation algorithms [2].

In addition to spectrum modeling, in HMM-TTS, HMMs
are used to model prosodic features. In this paper we focus
on duration modeling. Explicit models are not typically used
in HMM-TTS, although it would be possible to utilize for ex-
ample CART (classification and regression tree) [3], multivari-
ate regression, Bayesian networks [4] or artificial neural net-
works [5] for phone duration modeling. Instead, prosody is cre-
ated through the use of context dependent training and a rich
context feature representation. This representation involves not
only context phone identities but also a large number of other
phonetic and linguistic features. One major difference to the
conventional duration modeling is that in HMM-TTS phoneme
durations become modeled through combining HMM state du-
rations. Another major difference is that the conventionaldu-
ration models usually employ a relatively small set of carefully
selected features while HMM-TTS relies on the use of a very
large set of less sophisticated context features, say 1000-1500
binary features. Not all the features are important or effective,

and the selection of the important ones is done automatically
during prediction model training.

It is impossible to include all the rich context feature com-
binations of a language in the training data. For example in the
case of 1000 features, in theory, there are21000 different feature
combinations. Therefore, a mechanism for the prediction ofun-
seen combinations must be provided. This is typically done by
employing clustering of trained models. In HMM-TTS, a deci-
sion tree using minimum description length (MDL) difference
as a cluster splitting criterion [6] is employed. The question
set determining the possible splits contains a large amountof
binary yes/no questions about the model representation. Inad-
dition to the prediction of unseen models, the use of model clus-
tering decreases the TTS system footprint and also alleviates the
effect of outliers present in the training data.

In this paper we evaluate the accuracy of different simple
duration prediction techniques for an English and a Finnish
speech database. In addition to the MDL-based cluster-
ing, regression techniques for rich context features with high
collinearity are discussed and evaluated. Furthermore, weana-
lyze the structure and the characteristics of the binary rich con-
text feature matrix.

The paper is organized as follows. In Section 2 and 3, the
duration modeling and prediction in HMM-TTS are described.
The analysis of the duration prediction accuracy is presented in
Section 4. Section 5 concludes the paper.

2. Duration modeling in HMM-based TTS
The duration of a phoneme is typically modeled through HMM
state durations: each context-dependent phoneme is modeled as
a sequence of states and the duration of the states is modeled.
A state transition probability denoting a probability of moving
from one state to another is determined. Typically, left-to-right
models with no state skips are used, hence the transition proba-
bility for the transitions to other states except for the following
state and the state itself are set to zero.

To model the state durations for synthesis, duration proba-
bility distribution for each state is determined. In HMM-TTS
duration modeling the distributions are formed based on the
statistics from HMM parameter re-estimation [7]. Each state
duration probability distribution is regarded as a single Gaus-
sian with a certain mean and variance. The mean and variance
are extracted based on the average of all possible durations, each
of them weighted with the corresponding state occupancy prob-
ability (i.e. probability of occupying the given state during the
given time interval).

In HMM-based modeling, duration distributions are used
in synthesis but they are not explicitly present in HMM pa-
rameter estimation. The state transition probabilities control
the state durations instead. A more accurate modeling can



be achieved using hidden semi-Markov model (HSMM)-based
techniques [8]. In HSMM-based modeling, the duration distri-
butions are explicitly present already in HMM training.

3. Methods for duration prediction
3.1. Decision tree-based clustering and MDL

Decision trees are popularly used for many reasons. First of
all, they are non-parametric and suitable for modeling different
kinds of input data. Secondly, they can give rather accuratepre-
dictions despite outliers and redundant input data. Furthermore,
they are intuitive and thus easily understandable. Decision tree
can be a regression or classification tree. Since phone duration
is a continuous target variable, it is modeled by a regression
tree. One problem related to the trees is that they do not have
interpolation properties and thus the modeling of rare instances
is prevented. Another problem for duration modeling is discon-
tinuity, a pruned tree with a small amount of data can give rather
distinct values for phone durations.

One issue that needs to be considered in tree building is the
termination criterion for data splitting. Usually the treeis first
grown into its maximal depth and then pruning is carried out
using the optimal configuration given by cross-validation.Nev-
ertheless, cross-validation is computationally demanding. Thus
some alternative splitting criteria have been developed such as
splitting based on MDL criterion.

In MDL-based decision tree clustering [6], both the acous-
tic similarity of a data cluster and an observation as well asthe
complexity of the resulting tree are taken into account during
the tree construction. Contrary to the traditional decision tree
clustering techniques, MDL-based tree construction can termi-
nate unassisted when the optimal model for the data has been
found. The tree construction algorithm starts with a one-node
tree with all the data in one tree node and progresses in stages
by selecting one node at a time to be split using a question se-
lected from a given question set. In HMM-TTS, the data to be
clustered consists of model distributions and the given question
set of binary rich context feature questions. To provide reliable
phone-level duration models, the state duration distributions of
a phoneme are clustered together unlike in clustering of other
model features, where the distributions are clustered statewise.

Each node-question pair is selected to minimize the de-
scription length of the resulting decision tree. Description
lengthl(U) of a modelU is defined as [6]

l(U) =

M
X

m=1
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2
Γm (K + K log(2π) + log |Σm|)

+ KM log W + C

(1)

whereΓm denotes the total occupancy count at nodeSm, K
the dimensionality of the data vector,Σm the covariance of the
Gaussian distribution at nodeSm, andC a fixed constant value.
W =

PM

m=1
Γm, whereM is the total number of leaf nodes

in U . Splitting nodeSm into two nodesSmqy andSmqn results
in a new modelU ′ with M + 1 leaf nodes. The best split is the
one that minimizes the difference∆m(q)

∆m(q) =l(U ′) − l(U)

=
1

2
(Γmqy log |Σmqy| + Γmqn log |Σmqn|

− Γm log |Σm|) + K log W

(2)

subscript indicesmqy and mqn indicating theyes and no
branches of the split model starting from the nodeSm. For each

leaf-node, all possible questions are considered and the node-
question pair minimizing the description length difference is se-
lected, assuming the difference to be less than zero. Splitting is
repeated until there are no possible nodes left for splitting.

3.2. Multivariate regression

Regression analyzes the relationship between two variables,X
andY , and constructs a model to describe it. The least squares
solutions for the linear multivariate regression problem is

β = (XT X)−1XT Y (3)

where X isnxp matrix of predictors and Y isnxk matrix of
responses. They are both centered to zero-mean.

Multicollinearity is a term used to describe a situation
where two or more variables inX correlate with each other.
This can affect the matrix rank. The matrix rank means a max-
imum number of linearly independent rows ofX. Rich-context
features in HMM-TTS exhibit strong multicollinearity, forin-
stance the featureIndex of the syllable in the sentence≤ 12
is likely to correlate with the featureIndex of the syllable in the
sentence≤ 11. Although there may be instances that fulfill only
the first condition, they may be rare if the sentences are short.
Multicollinearity can result in a singularXT X term and further
leading to a model that is still unbiased but results in high stan-
dard deviation of the prediction error. In Section 4 we analyze
the feature matrix ranks for an English and a Finnish database.

Multicollinearity can be tackled by taking a pseudoinverse
of XT X in Eq. 3. It is based on singular value decomposi-
tion; all the singular values that are below a certain threshold
are omitted. Furthermore,ridge regressionis another alterna-
tive technique coping with multicollinearity. It adds a constant
term to the covariance matrix as

β = (XT X + λI)−1XT Y (4)

whereλ is a biasing or ridge parameter andI is an identity ma-
trix. Ridge regression attenuates the effect of lower-variance
components and results in a biased estimate but can give lower
prediction error. The ridge parameter can be chosen by cross-
validation. Several methods for determiningλ have been pro-
posed e.g. [9].

4. Experiments
4.1. Speech databases and context features

The aim of this paper is to analyze the effect of different du-
ration prediction methods in the framework of HMM-TTS.
The data used for the evaluations consisted of two manu-
ally annotated male speech databases. For English, a pub-
licly available database CSTR US KED Timit (available at
http://festvox.org/dbs/dbs_kdt.html) containing 450
utterances was used. For Finnish, a prosodically rich database
of 650 utterances was used. Separate prediction question sets
for English and Finnish were employed. The question set
for English is presented in [1]. The Finnish question set was
slightly modified from the English set; part-of-speech and ac-
cent were left out while some additional phoneme identity-
related features were included.

For Finnish, long phoneme quantities were found problem-
atic in terms of duration. For the speech parameter modeling, it
is justified to use the same model for short and long phoneme
quantities. However, in duration modeling the situation ismore
complicated since duration of a long phoneme cannot be defined



simply as a combination of the duration of two short ones. For
Finnish, long vowels were modeled as one phoneme, separate
from the corresponding short phonemes. Models of long vow-
els were still initiated using initial models of the corresponding
short phonemes. The high number (18) of diphthongs occurring
in Finnish prevents their modeling as a single phoneme; Finnish
diphthongs were modeled as two separate phonemes while the
English diphthongs were treated as a single phoneme.

The statistics for the English and Finnish database are given
in Table 1 and Table 2, respectively. In the tables, All refers
to consonants, vowels, and pauses, i.e. all phoneme instances
in the database. Further, separate analysis for consonantsand
vowels was carried out, the results being presented in the tables
as well. The number of non-zero features refers to the number
of those features that do not have all the instances either true
or false. For example, when considering only consonants, the
questionIs the current feature vowelis false for every instance
and thus it is removed. In addition, we calculated the matrix
ranks for each case. As can be seen, the rank is much lower
than the number of non-zero features, indicating high collinear-
ity. Extraction of principal components for the Finnish data re-
vealed that the first 250 components were able to explain 97%
of the variance.

Table 1:Database and feature matrix statistics for the English
database. See the text for a more detailed description.

Instances Features Non-zeros Rank
All 14 627 1 339 1 212 566
Consonants 8 304 1 339 1 102 496
Vowels 5 423 1 339 1 090 483

Table 2:Database and feature matrix statistics for the Finnish
database. See the text for a more detailed description.

Instances Features Non-zeros Rank
All 45 065 1 378 1 140 492
Consonants 23 182 1 378 1 035 463
Vowels 19 994 1 378 1 016 451

4.2. Model training and state alignment

For duration prediction, explicit state durations were deter-
mined. To get the state alignment for each database phoneme,
left-to-right HSMM models with no state skips were trained us-
ing the HMM-based speech synthesis system (HTS) [10], ver-
sion 2.1. For speech parameterization, Mel-cepstral coefficients
of order 39 with the dynamic features were used.

State durations of the speech data were estimated by Viterbi
state alignment using the trained models. HSMM models were
converted into HMMs by estimating the probabilities of state
transitions. For each phone, a manually labeled quinphone con-
text was taken into account and the alignment was allowed to
move the context phone boundaries.

4.3. Evaluation of the duration prediction accuracy

The methods of Section 2 were compared in terms of duration
prediction accuracy. The comparisons were carried out in three
different categories: 1) Viterbi phone alignment 2) Viterbi state
alignment and 3) manual phone durations. Both phone and state
durations from Viterbi alignment were considered in the eval-

uations at phone level. The accuracy was evaluated by com-
paring predicted values to the reference durations given bythe
Viterbi alignment. In addition, prediction accuracy for man-
ually labeled durations was evaluated separately from Viterbi
alignment results.

Consonants and vowels were evaluated separately. For
both, the training data was divided randomly into five subsets
and the sets were kept fixed for all three categories. One subset
was used as test data and the rest as training data. This was re-
peated for all of five subset divisions in a way that each phone
was included exactly once in a test data set. In order to prevent
the distortion caused by annotation outliers, a rough approxima-
tion for detecting them was used and they were removed before
dividing the data into subsets. The phones with a manually la-
beled duration differing from the duration mean value by more
than five standard deviations were removed.

The evaluation results are presented in tables 3-5. In
the results, CART refers to a decision tree-based prediction
using 10-fold cross-validation for tree pruning. Regression
refers to multivariate regression of Eq. 3 using a pseudoin-
verse ofXT X. For ridge regression of Eq. 4, ridge parameter
λ =

`

p
Pn

i=1
e2

i

´

/
`

(n − p)
Pp

i=1
β2
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´

[9] is used. Heren, p,
βi, andei denote the number of samples, number of features,
regression-based prediction, and resulting prediction error, re-
spectively. MDL refers to MDL-based decision tree clustering
of Eq. 1-2. For the regression-based techniques, each feature
was required to have at least 1% of the instances to be true/false,
otherwise the feature was ignored.

The prediction accuracy for Viterbi-based phone durations
is presented in Table 3. For both English and Finnish vow-
els, ridge regression was able to provide the lowest root mean
square error (RMSE) value and the highest (pseudo)R2 value
indicating the level of correlation between predicted and refer-
ence durations for the test data. For English consonants, differ-
ence of the prediction accuracy of MDL and regression-based
techniques was negligible, CART-based approach producingthe
lowest accuracy. For Finnish consonants, the best accuracywas
provided by MDL and CART-based techniques.

Table 3: Phone duration prediction error for the speech
databases using phone durations from Viterbi alignment. The
average number of leaf nodes is given in parenthesis for both
languages.

English Finnish
RMSE (ms) R

2 RMSE (ms) R
2

Consonants
CART (45,63) 24.9 0.50 24.3 0.40
Regression 24.1 0.53 25.0 0.37
Ridge regression 24.0 0.53 25.0 0.37
MDL (145,231) 24.1 0.53 24.3 0.41

Vowels
CART (20,40) 30.3 0.50 25.6 0.51
Regression 28.4 0.53 24.6 0.54
Ridge regression 28.0 0.55 24.5 0.55
MDL (116,205) 29.5 0.50 25.1 0.52

For the state-level Viterbi durations, three of the predic-
tion methods were considered: regression, ridge regression,
and MDL-based tree clustering. The evaluation was done at
phone-level, and the phone durations were obtained by sum-
ming over the five predicted state durations. As in Viterbi phone
duration prediction, regression-based techniques outperformed
MDL-based tree clustering for the vowels of both languages,
ridge regression providing the lowest RMSE and highestR2



value. For consonants, RMSE differences were smaller, ridge
regression resulting in the lowest RMSE for English consonants
and MDL-based clustering for Finnish consonants.

Table 4: Phone duration prediction error for the speech
databases using state durations from Viterbi alignment. The
average number of leaf nodes is given in parenthesis for both
languages.

English Finnish
RMSE (ms) R

2 RMSE (ms) R
2

Consonants
Regression 24.2 0.52 24.9 0.37
Ridge regression 23.9 0.53 24.9 0.38
MDL (148,262) 24.7 0.50 24.4 0.40

Vowels
Regression 28.5 0.53 24.6 0.54
Ridge regression 28.0 0.55 24.5 0.55
MDL (96,258) 30.6 0.46 26.4 0.47

In addition to the state and phone durations from Viterbi
alignment, the prediction techniques were also applied to the
manually assigned phone durations. Prediction errors for both
databases and each method are displayed in Table 5. For En-
glish and Finnish vowels and Finnish consonants, regression-
based techniques produced the most accurate predictions. For
English consonants, the accuracy differences between CART-
based and regression-based prediction techniques were very
small. The results for the English database are rather well in
line with the results presented in [3].

Table 5: Phone duration prediction error for the speech
databases using phone durations from manual alignment. The
average number of leaf nodes is given in parenthesis for both
languages.

English Finnish
RMSE (ms) R

2 RMSE (ms) R
2

Consonants
CART (37,58) 20.6 0.54 16.9 0.64
Regression 20.8 0.53 16.4 0.66
Ridge regression 20.7 0.54 16.4 0.66
MDL (132,216) 21.7 0.48 16.6 0.65

Vowels
CART (22,55) 25.1 0.55 18.0 0.66
Regression 23.8 0.60 17.3 0.68
Ridge regression 23.2 0.61 17.3 0.68
MDL (77,237) 27.1 0.47 17.6 0.67

In general, the regression-based prediction methods were
able to provide more accurate duration prediction comparedto
the tree-based prediction methods. For consonants, accuracy
differences were rather small and the prediction techniquepro-
viding the best accuracy varied. This can indicate that for vow-
els, a global prediction model might be formed, while conso-
nants are more challenging in terms of duration prediction.To
further increase the accuracy of consonant duration prediction,
consonant subsets could be formed in order to build better pre-
diction models from the data.

Phone-level durations are prosodically better motivated
units than state-level durations. This could be exploited by us-
ing proportional state durations to predict the state-level dura-
tions, but predict the phone durations directly using phone-level
models. Currently in HMM-TTS, only state-level durations are
employed. In the evaluations, MDL-based clustering turnedout

to produce less accurate predictions for the the Viterbi aligned
state durations compared to the Viterbi aligned phone durations.
For regression-based techniques, RMSE differences of state and
phone-level predictions were negligible.

5. Conclusions
In this paper, we have studied the duration modeling accu-
racy in HMM-TTS. The evaluations included tests on English
and Finnish speech data using simple and straightforward tech-
niques (CART, MDL-tree, pseudoinverse regression, and ridge
regression). Phone duration prediction was evaluated using both
phone and state durations received from the Viterbi alignment of
the training data. In addition, manually labeled database phone
durations were considered. The results indicate, that for vow-
els, the regression-based techniques outperform the MDL-based
tree clustering traditionally used in HMM-TTS while for con-
sonants, the method providing the best accuracy varies.

This paper has studied duration modeling using objective
measurements only. Although the preference for objective tests
has been clear in the literature studying duration modeling, the
authors acknowledge the fact that objective metrics may not
reveal all the perceptual effects. Nevertheless, in the case of
HMM-TTS, it is not straightforward to arrange meaningful lis-
tening tests because it is not possible to isolate the perceptual
effects caused by duration changes. Thus, we considered objec-
tive tests to be more meaningful for the purpose of this paper.
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