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Abstract

In this paper, we describe experiments on automatic Emotion
Recognition using comparable speech corpora collected from
real-life American English and German Interactive Voice Re-
sponse systems. We compute the optimal set of acoustic and
prosodic features for mono-, cross- and multi-lingual anger
recognition, and analyze the differences. When an emotion
recognition system is confronted with a language it has not
been trained on we normally observe a severe system degrada-
tion. Analyzing this loss we report on strategies to combine the
feature spaces with and without combining and retraining the
mono-lingual systems. We report classification scores and fea-
ture sets for various cases, and estimate the relative importance
of features on both databases. We compare the feature distribu-
tion and feature ranks by evaluating information gain ratio. Af-
ter final system integration, we obtain a single bi-lingual anger
recognition system which performs just as well as two separate
mono-lingual systems on the test data.

Index Terms: emotion recognition, anger classification, IVR
speech, IGR, acoustic prosodic features, speech processing

1. Introduction

Being able to automatically detect user emotions in speech di-
alog systems can be useful for a variety of purposes, includ-
ing monitoring quality of service, or designing more natural di-
alogs and adaptation strategies. Anger recognition in particular
can deliver useful information to the operator of an Interactive
Voice Response (IVR) platform, and help to improve the cus-
tomer experience. Because it can detect potentially “problem-
atic” dialogs or turns, anger recognition can be applied to trigger
dialog adaptation steps in order to accommodate the expectation
of customers who are already in disposition with the system. At
the same time it generates expectations about costs of calls and
thus helps to serve callers at a given cost in automated care.

In this work, we use acoustic and prosodic signal character-
istics to model expressive speech behavior, such as patterns of
intensities, intonations contours or rhythmical characteristics.
Previous research reported on acoustic and linguistic anger clas-
sification systems that operate on a single language [1, 2, 3, 4].
We now examine a large set of acoustic features on two differ-
ent languages, American English and German. We calculate a
ranking of best performing features for both languages individ-
ually, merge the most promising features and analyze the cross-
language performance. We obtain a robust subset of features,
which gives best results when tested on the combined English
and German test sets.
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2. Databases

Our databases consist of narrow band telephony speech
recorded on IVR platforms in the US and Germany. Both
platforms provide self-support for Internet and telephony re-
lated services and troubleshooting. The databases include back-
ground noise, people use cross- and off-talk, and speak in a
conversational style, although we generally observe very short
utterances, and many one-word sentences, mainly when navi-
gating menus and answering system questions.

The German database contains 21 hours of recordings. The
data can be subdivided into 4683 dialogs, averaging 5.8 turns
per dialog. For each turn, 3 labelers assigned one of the fol-
lowing labels: not angry, not sure, slightly angry, clear anger,
clear rage or marked the turns as non applicable when encoun-
tering garbage. The labels were mapped onto two cover classes
by clustering according to a threshold over the average of all
voters’ labels as described in [5]. Taking a subset for experi-
ments from the original set, our training setup contained 1761
angry turns and 2502 non-angry turns. The test setup included
190 angry turns and 302 non-angry turns which roughly corre-
sponds to a 40/60 split of anger/non-anger distribution in the
sets. Following Davies extension of Cohen’s Kappa [6] we ob-
tain a value of k = 0.52 which corresponds to fair inter labeler
agreement. The average turn length after cleaning out initial
and final pauses is 0.84 seconds.

The English database comprises 10 hours of recordings,
split into 1911 dialogs. Three labelers divided the corpus into
angry, annoyed and non-angry utterances. The final label was
generated by majority voting. The resulting distribution com-
prises 90.2% neutral, 5.1% garbage, 3.4% annoyed and 0.7%
angry utterances. 0.6% of the samples in the corpus were re-
moved since all three raters had given different ratings. While
the number of angry and annoyed utterances seems very low,
429 calls (i.e. 22.4% of all dialogs) contained annoyed or angry
utterances. Deducing a sub that can be compared to the Ger-
man datrabase we collapsed “annoyed” and “angry” to “angry”
and created test and training sets that also have a 40/60 split
of anger/non-anger class. The resulting training set consists of
1396 non-angry and 931 angry turns while the final test set com-
prises 164 non-angry utterances and 81 utterances of the anger
class. We measure moderate agreement, Kappa x = 0.63. The
average turn length after cleaning out initial and final pauses is
1.8 seconds.



3. Prosodic and Acoustic Modeling

In our prosodic and acoustic feature definition we calculate a
broad variety of information about vocal expression patterns
that can be useful when classifying speech meta-data. Deal-
ing with IVR speech we usually deal with very short utterances.
We therefore interpret every turn as a short utterance of one
prosodic entity. Consequently we calculate our statistics to ac-
count for whole utterances, i.e. we apply static feature length
modeling. Our feature definition consists of two consecutive
units: an initial audio descriptor extraction unit followed by a
unit that calculates various statistics on both the descriptors and
certain subsegments of them.

3.1. Audio Descriptors

The audio descriptors can be sub-divided into 7 groups: pitch,
loudness, MFCC, spectrals, formants, intensity and other fea-
tures. All descriptors are extracted using 10ms frame shift.

Pitch features are calculated by autocorrelation. After con-
verting pitch into the semitone domain we apply piecewise
cubic interpolation and smoothing by local regression using
weighted linear least squares. We use relative thresholds and
a rule-based path finding algorithm to prevent octave jumps.

We extract perceptual loudness as defined by [7]. This mea-
surement operates on a Bark filtered version of the spectrum and
finally integrates the filter coefficients to a single loudness value
in sone units per frame. Further we filter for the Mel domain.
After filtering a discrete cosine transformation (DCT) gives the
values of the Mel frequency cepstral coefficients (MFCC). We
extract a number of 16 coefficients and keep the zero coefficient.

Further features from the spectrum are the center of spec-
tral mass gravity (centroid), the 95% roll-off point of spectral
energy and the spectral flux. These features will be referred to
as spectrals in the following experiments.

Due to narrow band speech quality we extract 5 formant
frequencies and estimate the respective bandwidths.

Taken directly from the speech signal we extract the contour
of intensity in decibel.

Referred to as other features we calculate the Harmonics-
to-Noise Ratio (HNR), the Zero-Crossing-Rate and features re-
lated to speech rhythm. Taken from the relation of voiced to
unvoiced speech segments we calculate durational features such
as pause lengths and average expansion of voiced segments.

3.2. Statistic Feature Definition

After finishing the extraction of audio descriptors our statisti-
cal unit now derives means, moments of first to fourth order,
extrema and ranges from the respective descriptors’ contours
in the first place. Special statistics are then applied to certain
contours. Pitch, loudness and intensity are further processed by
a DCT in order to model the behavior over time. High correla-
tion with the lower coefficients indicates a rather slowly moving
contour while mid-range coefficients would rater correlate to
fast moving audio descriptors. Higher order coefficients would
correlate to micro-prosodic movements of the respective curves,
which corresponds to a kind of shimmer in the power magnitude
and jitter in pitch movement.

Some features give meaningful values when applied to spe-
cial voice characteristics only. We segmentation into voiced,
unvoiced and silence segments. We calculate features on basis
of this segmentation and also append features on their ratio.

In order to exploit the temporal behavior at a certain point
in time we append first and second order derivatives (A; AA)

to the contours and calculate statistics on them alike.

A more detailed description of these features can be found
in [1]. All in all, we obtain about 1450 features. Table 2 gives
examples of the final features. Table 1 shows the different au-
dio descriptor groups and the number of features derived from
them. Also the f1 performance measurement on the train set is
given when classifying on basis of the respective groups exclu-
sively. The f1-measurement will be discussed in Section 4.

Feature Number of fl Performance f1 Performance

Group  Features on German DB on English DB
pitch 240 67.7 72.9
loudness 171 68.3 71.2
MFCC 612 68.6 68.4
spectrals 75 68.4 69.1
formants 180 68.4 67.8
intensity 171 68.5 73.5
other 10 56.2 67.2

Table 1: Feature Groups and Performance Figures on English
and German Databases

4. Feature Selection and Classification

We calculate classification success using the fl measurement
which is defined as the arithmetic mean of all class-specific F-
measures. The F-measure describes the harmonic mean of pre-
cision and recall of a given class. Note that an accuracy mea-
surement would allow for false bias since it is influenced by the
majority class to a greater extent than by other classes. Since
our class distribution is unbalanced and our models tend to fit
the majority class to a greater extent this would lead to overes-
timated accuracy figures.

All results were estimated by applying 10-fold speaker in-
dependent cross validation on the training set, i.e. only speakers
that are not used for training are in the test set of a fold. We also
keep an separate holdout set (global test set) for evaluation. For
classification we use a Support Vector Machine with a linear
kernel function.

Table 1 shows the f1 measurements for our audio descriptor
groups. While all feature groups seem to perform equally well
on the German database, intensity, loudness, and pitch perform
better than other feature groups for English speech.

In order to gain insight into the relevance of individual fea-
tures we apply a filter-based ranking scheme, i.e. Information-
Gain-Ratio (IGR). This entropy-based measure evaluates the
gain in information that a single feature contributes in adding
up to an average amount of information needed to classify for
all classes. After estimating the gain of information a normal-
ization by the amount of total information that can be drawn
from the span of a feature gives the Information Gain Ratio.
‘We obtain the optimal number of features to include by moving
along the top-ranks of all features for a language and incremen-
tally append the next lower ranks into the feature space until the
f1 performance reaches a maximum. The optimal numbers of
top-ranked features to include into the feature space resulted in
231 for the German database and 264 for the English database.

Figure 1 shows the contribution of the different feature
groups to the optimal sets. We can clearly see that for the En-
glish database a higher proportion of pitch and loudness features
are among the top ranks whereas for the German database more
MFCC features are in top ranks.



100

I other
661 1 | I pitch
[ formants
[ intensity
[ Jloudness
1 I vFcc
I specirals

331

Distribution in Percent

English German

Joint Sets

Figure 1: Distribution of Feature Groups in the Optimal Sets

After ranking our features we obtain 78.2% f1 for the En-
glish and 74.7% for the German database on the training set.
On the test sets we obtain 77% f1 for English and 77.2% for
German.

5. Multi-Lingual Experiments

We now report on cross-lingual system performance, i.e. when
a system built on English language decodes a German phrase
and vice versa. Note that at these steps the classifiers had not
been trained on any other material than the respective original
language data. As a next step we build a unified ranking and an-
alyze which features are promising for both systems. We set up
a unified feature space, evaluate its performance and compare
it to a system re-trained and re-ranked on combined databases.
Table 3 shows the results of our experiments.

5.1. Cross-Lingual Performance

When the system trained on English speech is evaluated on the
German test set we recognize a drop of f1 down to 65.2%. That
means a loss of 12% in absolute compared to the performance of
the mono-lingual German system. If the system trained on the
German database is evaluated on the English test set we notice
a loss of 6.3% absolute compared to the mono-lingual English
system. The f1 of 71.7% shows that although the models built
on German speech are quite capable of capturing multi-lingual
emotional information we still obtain an overall decrease of per-
formance for both systems when decoding cross-lingually.

5.2. Ranking Analysis

When looking at the top-ranked features of the separate sets we
observe that only 58% of the features are included in both top
rankings. These shared features consist of 20% pitch features,
12% formant features, another 12% loudness features, 8% in-
tensity features and 48% features of MFCC origin. However,
also the most features that are included in the top ranks of just
one database are of MFCC origin. Consequently, MFCCs are
of high importance but serve as bases for different statistics.

In terms of statistics, taking the maximum reveals to be
highly relevant. Also taking the mean seems to be important for
both languages. When we examine the actual MFC coefficients
that are subject to several statistics we notice a clear predomi-
nance of statistics on the first coefficient. Also the lower coef-
ficients ranging until the sixth coefficient seem to be important
as well as some scattered distributed coefficients like the ninth
and fourteenth.

Rank Feature
mean of A of loudness
min of 10th MFCC on voiced segments
10th DCT coeff. of loudness
max of A of 14th MFCC on voiced segments
kurtosis on AA of intensity
10th cepstral coeff. on AA of pitch
9th DCT coeff. on AA of loudness
std of A of pitch
max of A of intensity

0 10th cepst. coeff. on pitch
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Table 2: Average Ranking of the Shared Top-Ranked Features
from English and German Databases.

Considering the ranks of features drawn from different seg-
ments it turns out that statistics calculated on voiced segments
exclusively are very frequent among the top ranks, followed by
statistics on the whole segments. Statistics on the unvoiced parts
are of less importance.

Looking at pitch, processing the minimum of the first and
second order derivatives seems to be a reliable feature for both
sets. The coefficients from cepstral analysis of pitch movement
are frequently found amongst top ranks but, at the same time the
actual number of the respective underlying coefficients alter.

For the features calculated on loudness it shows that the
maximum, the mean and most of all the standard deviation are
frequently high-ranked. Also features on derivations of the
loudness are promising. Coefficients from a discrete cosine
transformation (DCT) applied to the loudness directly seem to
be of most relative importance for both databases.

We now compute an average rank from the former separated
ranks. The arithmetic mean of both ranks serves as measure to
obtain the new unified average ranking. Table 2 shows the top
10 ranks of the unified feature set.

5.3. Multi-Lingual Setup

In this step we experiment with two different methods of com-
bining the systems. One way is to take all promising features
from both systems into the new feature space. The other is to
build a combined data set and re-rank all features as if it was a
mono-lingual database.

When combining promising features the unity of the sepa-
rate top-ranks consists of 375 different features. When learning
these features from the German database and evaluating on the
German database we get a f1 performance of 75.1% which is
a gain of 0.4% absolute on the training database. Note that the
additional features slightly increase the performance. This is
a phenomenon that the IGR filter was not capable to indicate.
This is due to the heuristic filter scheme and the ignorance to-
wards the bias of the classification algorithm. When learning
and evaluating the unified features from the English database
we get a f1 performance of 78.5% which is again a small gain
of 0.3% absolute on the training database. When evaluating on
the test set we also notice a slight increase of 0.3% absolute.
The increase rises when evaluating the new German models on
the German test set. Here we even see a boost of 1.9% in f1
absolute. Consequently, the inclusion of the new features did
not jeopardize but increase the system’s mono-lingual overall
performance.

Now we are interested in the cross-lingual performance.



The system using the unified features trained on English speech
obtained a f1 score of 68% on the German test set while the
system trained on the German database obtained an f1 of 70%
when evaluated on the English test set. While improving the
scores by 2.8% f1 absolute for the recognition of German anger
we loose 1.7% f1 absolute for the recognition of English anger.
Combining the high-ranked features by unifying them eventu-
ally leads to a equalization of recognition scores for both lan-
guages. Calculating the average of both f1 measures we ob-
tain a multi-lingual average f1 of 69%. However, compared to
the mono-lingual performances of the systems this score seem
relatively low. Note that the systems are still trained on the
respective original language data exclusively. The low recog-
nition score can also be due to the fact that, although the most
promising features are selected, they have not been trained on
multi-lingual data.

As a next experiment, we combine the separate databases
for multi-lingual training. When learning the unified feature set
from the combined database we obtain 73.1% f1 on the com-
bined test set. This is a gain of 4.1% f1. Still, the feature ranks
have been obtained from unification of formerly mono-lingual
rankings.

Finally, we re-rank our features on the basis of the com-
bined data set. Building the new feature space in analogy to the
separate sets, we obtain an optimal number of 363 top-ranked
features. Figure 1 shows the feature group distribution of the
combined set. The corresponding f1 measure is 75.6% on the
combined train set. On the test set we achieve 74.5% f1 which
is an increase of 6.6% compared to the unified ranking method.
When the models are evaluated on the original German test set
we still obtain 77.7% f1 while the evaluation on the original
English test set results in 73.2% f1. After all, we show that
building a unified multi-lingual system we are able to keep up
the level of performance on the German database while losing
3.8% f1 on the English database.

6. Summary and Discussion

In this paper we analyzed different combinations of acous-
tic and prosodic features for multi-lingual anger recognition.
We have shown differences in feature rankings and classifica-
tion scores in between English and German IVR speech data
sets. When merging the two mono-lingual feature rankings for
bi-lingual classification, MFCC statistics dominate the unified
sets. Within these, the maximum and the mean calculated on
the voiced segments are most salient. For pitch, the deriva-
tives are most important. DCT coefficients are most impor-
tant in the loudness descriptors. Under constrained resources,
systems should therefore begin by evaluating these descriptors.
Related research has shown, that the difference in MFCC ranks
is correlated to the turn length while the difference in pitch and
loudness numbers is not [1]. Consequently, time normalization
needs to be addressed in future research.

The present work investigated for the first time a multi-
lingual emotion recognition system on real-life data. We find
the performance of a multi-lingual anger recognition system to
be very similar to the mono-lingual systems, so that operational
systems for multi-lingual emotion detection seem a possibility,
at least for simpler cases, such as anger recognition. We plan
to further investigate patterns behind the relative importance of
features, in order to be able to eventually attribute the language-
dependent importance of certain vocal patterns directly.

We have further calculated f1 classification scores for
mono- and multi-lingual performance. Table 3 shows the clas-

Setup English f1  German f1

Mono-Lingual Train Sets 78.2 74.7
Unified Features on Train Sets  78.5 751
Mono-Lingual Test Sets 77.0 77.2
Unified Features Test Sets 78.8 77.0
Cross-Lingual Eval. of Mono-

Lingual Features on Test Sets ~ 65.2 71.7
Cross-Lingual Eval. of

Unified Features on Test Sets ~ 68.0 70.0
Mono-Lingual Eval. of

Joint Databases Sets 73.2 71.7

Table 3: Performance Figures of the Different Database and
Feature Combinations.

sification scores for the different experiments in feature space
setup. Eventually, we are able to build a multi-lingual emo-
tion recognition system that performs with an f1 of 75.6 on the
multi-lingual train set and 74.5 {1 on the multi-lingual test set.
While keeping up with the mono-lingual German system perfor-
mance we notice a slight drop in decoding English anger when
fusing the two systems into one. Similar results were found in
[8] when the author compares cross-lingual human anger recog-
nition results. Note, that also differences in call transmission
channels applying different compression and encoding schemes
could influence the results. However, it is hard to conclude from
the signal quality to the impact on our anger recognition task,
as more or less information transmitted does not automatically
mean more or less relevance to anger recognition. In addition,
more subtle differences in IVR design and dialog domain can
be influential. Also, the training of labelers can be of impact.
Note, that as the English database offers a higher value of inter
labeler agreement we would expect a better classification score
for it. Finally, the general results of our experiments indicate a
reasonable and reliable multi-lingual anger recognition.
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