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Abstract

This paper proposes a framework of automatic determination 
of phrasing using acoustic features derived from the speech 
signal. The feature vectors were defined in a series of analyses 
investigating the acoustic-phonetic realization of minor and 
major phrase boundaries and different boundary types. The 
resulting representation was used to train statistical classifiers 
to automatically determine phrase boundary position and type. 
The output of the classifiers can be used to provide speech 
corpora with phrasing information to enhance the performance 
of TTS or ASR systems, or to generate a comprehensive 
feedback in prosody tutoring systems. Apart from providing an 
efficient means for automatic phrase boundary detection, the 
study presented in this paper sheds also light on the role of 
timing and F0 cues in signaling phrase boundaries.
Index Terms: phrasing, boundary tones, prosody labeling

1. Introduction

Next to prominence, phrasing belongs to the most important 
linguistic functions of intonation. It organizes an utterance into 
a hierarchical prosodic structure. Intonation phrases which 
occur almost at the top of this hierarchy (below utterance) 
include one obligatory (nuclear) pitch accent and are 
characterized by semantic and syntactic coherence. They 
constitute the domain of recurring intonation patterns and can 
be considered as units of information [1]. Although the 
correspondence between syntactic and semantic units on the 
one hand, and intonation phrases on the other is not 
straightforward, it is generally agreed that to some extent 
intonation phrases correspond to clauses.   

1.1. Functional aspects of phrasing 

Apart from a binary distinction between boundary presence vs. 
absence intonation phrase boundaries are classified with 
respect to strength (minor vs. major phrase boundary) and type
(rising – signaling continuation or interrogation as in yes/no 
questions,  falling – characteristic of statements, but also wh-
questions). This kind of phrasing information can be used to 
resolve ambiguous parses and to disambiguate the meaning 
that can be assigned to a given phrase by the hearer e.g. 
“what?” can be interpreted as a request for repetition of what 
the interlocutor has just said when realized with a rising 
boundary (– I have it. – What? – I have it.) or as a request for 
further information when realized with a falling pitch at the 
phrase boundary (– I have it. – What? – A dress.). This kind of 
knowledge can enhance the performance of the language 
model component of ASR or dialogue systems, e.g. [2].

1.2. Acoustic cues 

Perception and production studies have shown that phrase 
boundaries are signaled mainly by timing cues – duration of 
syllables and vowels increases significantly in the vicinity of 
phrase boundaries [3], [4], [5].

There is no agreement as regards correlation between 

boundary presence and strength on the one hand, and duration 
of the silent pause on the other. The significance of the silent 
pause in signaling phrase boundaries was shown in [6] where 
the accuracy of the automatic phrase boundary detection using 
only pause duration achieved 95.8%. The results of a 
perception study [4] prove that pause duration is an important 
cue to boundary strength, but in the prediction of upcoming 
boundaries listeners use it only in the absence of a distinct pre-
boundary lengthening (cf. [5]). The analyses reported in [3]
revealed that less than 50% of phrase boundaries are followed 
by a silent interval, which suggests that pause can not be 
systematically used as a cue to boundary presence.

Some studies point out the role of F0 cues [5], [7], [8] and 
voice quality [9] in signaling phrase boundaries. The results 
presented in these studies show that location and strength of 
upcoming phrase boundaries can be reliably judged without an 
access to lexical or syntactic information which indicates that 
acoustic cues are of primary importance in this task.

1.3. Automatic determination of phrasing 

Most of the state-of-the-art approaches to automatic 
determination of phrasing rely on large vectors consisting of 
one or more types of features: acoustic, lexical and/or 
syntactic. Statistical modeling methods applied to automatic 
boundary detection and classification include neural networks, 
classification trees, maximum entropy models or HMMs. The 
complexity of the models depends on speaking style, the 
number of categories that need to be recognized and the 
number of tasks performed by the model. 

As regards the best state-of-the-art models they achieve an 
overall accuracy well above 90% [6], [10], [11]. The 
performance of the best models is thus comparable to inter-
transcriber agreement for phrase boundary position 
identification [3], [12]. The same studies report on lower 
consistency (i.e. below 90%) in manual boundary type 
annotation. In automatic phrase boundary type classification 
accuracy rates are also about 5-10% lower than in detection of 
boundary position [13], [14].

2. Methodology

2.1. Speech material

The speech corpus used in the current study was built for the 
Polish module of BOSS (Bonn Open Source Synthesis) - a 
unit selection speech synthesis system. The corpus contains 
recordings of a professional male speaker (approx. 4 hours) 
reading phonetically rich and balanced sentences, fragments of 
fiction (including dialogues and examples of expressive 
speech) and reportage. From this corpus a subset consisting of 
1052 utterances (15566 syllables including 1880 phrase-final 
syllables) representative of the whole speech material included 
in the corpus was selected.

The speech material was annotated at the segmental and 
suprasegmental level. Transcription and segmentation at the 
phone, syllable and word level was obtained automatically. At 
the word level verification of the automatically inserted stress 



markers was carried out using a large pronunciation lexicon.
An inventory of five pitch accents and five phrase 

boundary types was defined. Unlike in the ToBI [12]
intonation labeling framework, the description of boundary 
phenomena used in the current study is based on and provides 
two types of information: 1) the strength of the phrase break –
where 2 marks minor phrase boundary and 5 major phrase 
boundary, and 2) the type of the distinctive pitch movement 
occurring at the phrase end – where dot indicates falling and a 
question mark rising boundary.

2.2. Phrase boundaries types

The inventory of phrase boundary types consists of three 
falling and two rising boundaries. One rising and one falling 
boundary type are associated with minor intonation phrase 
boundaries, and one rising and two falling boundaries – with 
major intonation phrase boundaries.

2,? and 5,? are rising boundaries realized by a rising pitch 
movement from a lower target level on the penultimate or 
ultimate syllable in the phrase to a higher F0 target associated 
with the phrase boundary. The two boundaries differ in the 
amplitude of the rise at the phrase edge (which is greater in 
case of 5,?) and scaling of the F0 targets (the rise starts higher 
and ends lower in speaker's range in case of 2,?). 5,? is 
associated with major phrase boundaries, whereas 2,? – with 
minor phrase boundaries.

Figure 1: Rising boundaries: 2,? (left) and 5,? (right).

2,. 5,. and 5,! are falling boundaries realized by a falling pitch 
movement from a higher target level on the penultimate or 
ultimate syllable in the phrase to a lower F0 target associated 
with the phrase edge. The three boundary types differ in the 
amplitude of the fall (which is the greatest in case of 5,! and 
the smallest in case of 5,.) and scaling of the F0 targets (in 
case of 5,. they are positioned significantly lower in speaker's 
range in comparison to 2,. and 5,!). 5,. and 5,! are associated 
with major phrase boundaries, whereas 2,. – with minor phrase 
boundaries. In the current study 5,! boundaries were not taken 
into account, because they were underrepresented in the 
speech corpus.

Figure 2: Falling boundaries: 2,. (left) and 5,. (right).

2.3. Feature extraction

For the analysis of the acoustic-phonetic realization of phrase 
boundaries for each syllable and its vocalic nucleus a number 
of features describing variation in F0 and duration was 
automatically extracted with a Praat script. The features 

included: 1) F0 value at syllable/vowel start/end and in the 
middle of the syllable/vowel, 2) maximum, minimum, mean 
F0 and standard deviation from the mean F0, 3) amplitude, 
steepness and duration of the rising and falling pitch 
movement, 4) Tilt model parameters [15], 5) slope parameter 
describing the amount of pitch variation, 6) absolute position 
(in ms) of F0 maximum and minimum, 7) syllable and vowel 
start, end time and duration. From these parameters further 
features were derived and normalized with respect to the 
overall F0 level over the length of the phrase (in case of F0 
parameters) or expected duration determined for a given vowel 
or syllable type (in case of duration parameters, see [16]). For 
each syllable and its vocalic nucleus features of the two 
previous and two next syllables/vowels were provided as well.
The resulting inventory consists of acoustic features which are 
commonly used in the analysis of intonation.

3. Production study

3.1. Feature selection

In a series of ANOVA and discriminant function analyses the 
effect of a major/minor phrase boundary presence/absence on 
variation in the acoustic features extracted from utterance's F0 
and timing cues was investigated. The objective of the 
analyses was to identify features that can be regarded as the 
best acoustic cues signaling intonation phrase boundaries and 
distinguishing among boundaries of a different type. The 
analyses were performed at the word level i.e. in the 
investigation of cues to boundary position only word-final 
syllables (6844) were taken into account and the acoustic-
phonetic realization of different phrase boundaries types was 
based on the subset of pre-boundary syllables (1880).

3.2. Time domain

ANOVA results showed that in the time domain phrase 
boundaries are signaled most of all by an increased duration of
the pre-boundary syllable (+b=1.34 vs. –b=0.9, mean values, 
F=504.01), increased duration of the vowel of the word-
penultimate syllable (+b=1.23 vs. –b=0.9, F=399.26) and to 
lesser extent – duration of the vowel of the pre-boundary 
syllable (+b=1.47 vs. –b=0.9, F=23.64). The effect of phrase 
boundary presence on variation in the duration features is 
statistically significant (p<0.01). 

As regards distinction among boundaries of a different 
type (2,? 2,. 5,? 5,.) timing cues play no significant role.

3.3. F0 domain

3.3.1. Cues to boundary presence

The results of ANOVA analyses prove the significance of F0 
features in signaling intonation phrase boundaries. The most 
important F0 features are: 

 tilt (F=92.61) – feature describing the shape of the pitch 
contour on the vowel of the word-final syllable: value -1 
indicates falling pitch movement, 1 indicates rising 
movement and 0 indicates the same amount of rise and 
fall [15]

 F0mean (F=81.07) – overall F0 level on the vowel

 slope (F=64.03) – feature expressing the amount of pitch 
variation on the vowel of the word-penultimate syllable

 c1 (F=25.31) rising amplitude on the vowel

All these features are significantly affected by the presence 
of a phrase boundary (p<0.01). The figure below shows the 



effect of phrase boundary presence (+b) and absence (-b) on 
the shape of the pitch contour (tilt, left) and overall F0 level 
(F0mean, right) on vowels in the word-final syllables.
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Figure 3: Mean tilt and F0mean of vowels in pre-
boundary (+b) and word-final syllables(-b).

It was observed that vowels in syllables of a phrase-final 
position (+b) are characterized by significantly less falling 
pitch (indicated by higher average tilt value) than vowels in 
syllables which do not precede a boundary. This effect can be 
attributed to rising boundaries which signal continuation or 
interrogative mode. Vocalic nuclei of phrase-final syllables 
have significantly higher rising amplitude (c1 +b=6,13) 
compared to other vowels (-b=0,38, mean values). The former 
are also characterized by significantly lower F0mean, which 
can be attributed to falling boundaries. The role of F0 features 
in signaling phrase boundaries is also confirmed by 
significantly greater amount of pitch variation (slope) on 
vowels in +b than –b class (129,4 Hz/s vs. 88,12 Hz/s). 

Similar effects to those reported here were found in [9]. It 
was shown there that variation in F0 (expressed in terms of 
parameters such as rhyme-final F0 level, F0 drop and slope) 
plays an important role in signaling prosodic boundaries. 
Moreover, in the absence of cues such as final lengthening and 
silent pause duration listeners rely on F0 features in prediction 
of boundary position and strength.

3.3.2. Cues to boundary type

In the ANOVA and discriminant function analyses it was 
found that phrase boundary type has the greatest effect on the 
following F0 features:

 F0end (F=914.15): F0 level at the end of the word-final 
syllable 

 F0mean (F=566.68): overall F0 level on the nucleus of 
the word-penultimate syllable – this feature can be useful 
for the distinction among different boundary types, 
because it is correlated with other significant features, 
namely syllable and nucleus relative duration and syllable 
distance to the next pause (in ms)

 direction (F=341.77): describes the direction of the 
distinctive pitch movement at the edge of the phrase; it is 
calculated as a difference between overall F0 level on the 
vowel of the word-penultimate and word-final syllable

The effect of phrase boundary type on the variation in the 
F0 features listed above is statistically significant (p<0.01). 
Fig. 4 illustrates the distribution of F0end and F0mean values 
in the four classes of phrase boundaries. It can be seen that 
rising boundaries are characterized by higher F0end than 
falling boundaries and that minor phrase boundaries (2,. and 
2,?) can be effectively distinguished from major phrase 
boundaries (5,. and 5,?) by higher F0mean.

As regards the direction feature it distinguishes not only 
rising from falling boundaries, but also weaker from stronger 
boundaries (2 vs. 5).
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Figure 4: Variation in the average values of F0mean
and F0end depending on phrase boundary type.

3.4. Other features

Instead of using silent pause duration to distinguish between 
minor and major intonation phrase boundaries we propose to 
use a feature describing the distance of the word-final syllable 
to the next silent pause measured in syllables. 

As expected, it was found that minor phrase boundaries 
are significantly less frequently signaled by pauses than major 
boundaries – similar effects are reported in [3]. In our speech 
corpus the average distance of syllables of the final position is 
9-10 syllables in minor intonation phrases and only 1 syllable 
in major intonation phrases. These differences are statistically 
significant (p<0.01). ANOVA (F=341.77) also indicates that 
distance to the next pause can be a very efficient feature in 
distinguishing between boundaries of a different strength.

4. Automatic determination of phrasing 

4.1. Features

The framework of automatic phrasing proposed in this study 
can be summarized as follows:

 Statistical modeling techniques applied to automatic 
determination of phrasing include neural networks 
(multilayer perceptrones – MLP, radial basis function –
RBF networks), discriminant function analysis (DFA) 
and decisions trees (DT). The models are designed semi-
automatically using Statistica 6.0 software.

 Phrase boundary detection and classification are 
performed separately (i.e., by different models).

 The models rely on small feature vectors which provide a 
compact acoustic-phonetic description of the realization 
of boundary phenomena. Contrary to [11] where syntactic
features are used as well, our feature vectors consist 
mostly of acoustic features (10 altogether) which can be 
easily derived from utterances’ F0 and timing cues. The 
only lexical feature used in the current study is syllable’s 
distance to the next pause (sec. 3.4).

 Determination of phrasing is performed at the word level.

 Contrary to [6], [10] in the task of detection of boundary 
position we account for both minor and major phrase 
boundaries. 

4.2. Detection of phrase boundary position

All models (MLP, RBF, DFA and DT) designed in the current 
study perform much better than a chance-level detector which 
assigns the most frequent label (here –b) to all syllables. DFA 
yielded the highest average accuracy – 82.05% (in the cross-
validation test). However, the best overall performance had the 
RBF network – apart from yielding high average accuracy 
(80.42%) it enabled correct identification of boundary position 



in 81.55% cases and of non-phrase-final syllables in 79.29%
cases. The performance of all models is summarized in Table 
1; the numbers in brackets (column class) show chance-level 
accuracies.

The results of sensitivity analysis carried out on the inputs 
to the best-performing network (RBF) are similar to those of 
the ANOVA analyses as regards the contribution of various F0 
and duration features to the distinction between phrase-final 
vs. non-final syllables and vowels. The results prove that for 
the detection of phrase boundary position features reflecting 
variation in pitch (tilt, slope) and overall pitch level (F0mean) 
are as important as features describing variation in duration. 

Table 1: Detection of boundary position (test sample).

class MLP 
(4:14:1)

RBF
(7:23:1)

DT (5 splits, 6 
terminal nodes)

DFA

-b (72.59) 81.99 79.29 84.33 90.05
+b (27.14) 76.26 81.55 78.6 74.04
Average% 79.13 80.42 81.47 82.05

4.3. Classification of boundary type

In general, performance of models designed for classification 
of phrase boundary types is comparable to that of the 
boundary detection models. The average accuracy yielded by 
the former varies between 80.98% (DFA) and 87.61% (RBF 
network, 54 neurons in the hidden layer). The average 
recognition accuracy achieved with the classification tree (9 
splits, 10 terminal nodes) and MLP network (20 neurons in the 
hidden layer) is above 84%. All the models perform much 
better than a chance-level boundary type classifier.

Weak boundaries (2,. and 2,?) were more difficult to 
recognize than strong boundaries (5,. and 5,?). The average 
recognition accuracy of the former did not exceed 85%,
whereas the latter were recognized with at least 92% accuracy 
(results computed for the test sample). In the table below the 
best classification results (RBF network) are summarized.

Table 2: Boundary type classification (test sample).

class 2,. (20.42) 2,? (33.42) 5,. (37.93) 5,? (8.22)
accuracy % 70.13 84.92 98.6 96.7

5. Discussion and outlook

The main focus of the paper was to propose an efficient 
framework of automatic determination of phrasing based on a 
compact acoustic-phonetic representation consisting of two 
feature vectors. This representation can be easily derived from 
timing cues and utterance’s F0. Seven F0 and duration features 
are used as an input to statistical models performing automatic 
detection of phrase boundary position and only four features 
(describing F0 variation and distance to the next pause) are 
used to automatically classify phrase boundary types (2,. 2,? 
5,. 5,?). The results of sensitivity analyses (computed for the 
neural networks) and importance ranking of predictor 
variables (computed for the classification trees) confirmed the 
significance of the selected features to the detection and 
classification of phrase boundaries. Our results are in line with 
those of other perception and production studies [5], [8], [9]
which indicate that both duration and F0 variation are 
important cues to phrasing, although boundary presence has 
greater effect on duration than on F0.

The performance of our phrase boundary detection models  
(average accuracy between 79 and 82%) compares favorably 
with [17] where the distinction between phrase-final vs. non-

final syllables was accurate in 71% on average, and is similar 
to the performance of the models described in a recent study 
[5]. The fact that our models are less efficient than the best 
models presented in the literature (above 90% average 
accuracy) may be due to the fact that we take into account 
both minor and major phrase boundaries. As regards boundary 
type classification our models achieve average accuracy 
similar to that achieved by the best models [6], [10], [14]. 

Apart from high efficiency (high average accuracy in 
boundary detection and classification) the advantage of the 
framework proposed in this paper is the use of a compact 
acoustic-phonetic representation consisting of features which 
can be easily extracted from utterance’s F0 and timing cues.

In the future it is planned to generalize this framework to 
other speakers and speaking styles, and to investigate the 
contribution of the selected acoustic features to the perception 
of phrase boundaries and recognition of boundary types by 
human listeners.
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