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Abstract 

The HMM-based speech synthesis system can produce high 

quality synthetic speech with flexible modeling of spectral and 

prosodic parameters. In this approach, short term spectra, 

fundamental frequency (F0) and duration are generated by 

multi-stream HMMs separately. However the quality of 

synthetic speech degrades when feature vectors used in 

training are noisy. Among all noisy features, pitch tracking 

errors and corresponding flawed voiced/unvoiced (VU) 

decisions are the two key factors in voice quality problems. 

Pitch tracking errors occur more often in Mandarin vowels of 

Tone 3 and Tone 4, because the pitch of these vowels can be 

very low and sometimes treated as aperiodic signal. On the 

other hand, F0 values in unvoiced regions, such as consonants, 

are normally defined as unavailable; it is then impossible to 

use standard HMMs for F0 modeling. Currently a preferred 

method to solve this is to use a multi-space distribution HMM 

(MSDHMM). In this approach, discrete distributions are used 

for modeling the VU decision and continuous Gaussian 

distributions are used for F0 modeling within the voiced 

regions. Due to this assumption of undefined F0 values in 

unvoiced regions and the special structure of MSDHMM, the 

generated F0 values are limited in accuracy. In this paper, an 

F0 generation process model is used to estimate F0 values in 

the region of pitch tracking errors, as well as in unvoiced 

regions. A prior knowledge of VU is imposed in each 

Mandarin phoneme and then used for VU decision. Thus the 

F0 can be modeled within the standard HMM framework. 

 

Index Terms: Mandarin speech synthesis, Generation process 

model, F0 contour, HMM-based speech synthesis 

1. Introduction 

Recently in speech synthesis community, attention has been 

attracted by HMM-based speech synthesis, in which short term 

spectra, fundamental frequency (F0) and duration are 

simultaneously modeled by the corresponding HMMs. It has 

compact and flexible representation of voice characteristics 

and has been successfully applied to Text-To-Speech system 

in many different languages, e.g., Japanese, English and 

Mandarin [1]. Compared with the large corpus, example the 

unit selection based speech synthesis, HMM-based synthesis is 

statistically oriented and model based. The speech generated 

by the HMMs is fairly smooth and exhibits no concatenation 

glitches occur in unit-selection synthesis. To change the 

segmental or supra-segmental quality of the generated speech, 

we can modify HMM parameters flexibly [2, 3].  

     However, in HMM-based synthesis, voice quality degrades 

when acoustic features used in training are noisy or flawed. 

Among them, pitch tracking errors and companion flawed 

voiced or unvoiced decisions are key causes of voice quality 

degradation. Different approaches have been proposed to 

improve the pitch tracking performance. Many HMM-based 

systems use STRAIGHT [4], a high quality speech analysis-

synthesis system, to extract acoustic parameters for HMM 

training. In [5], a voting method, which combines the IFAS [6] 

algorithm, a fixed-point analysis called TEMPO [7] and ESPS 

robust pitch tracking (RAPT) algorithm [8], to alleviate F0 

extraction errors such as F0 halving and doubling, and 

voiced/unvoiced swapping. But still as we look into pitch 

tracking of Mandarin syllables, the tracking errors occur more 

often in vowels of Tone 3 and Tone 4. Because the pitch of 

those syllables can be very low and somewhat are not strong in 

periodicity. Thus the synthesized vowels sound very dry and 

hoarse, which greatly hurt the overall quality of synthesized 

speech. 

     Furthermore, in HMM-based synthesis, the modeling of F0 

is difficult due to the discontinuity of F0 across voiced and 

unvoiced region. The multi-space distribution HMM (MSD-

HMM) provides a solution to this problem by using a 

combination of discrete and continuous distributions [9] and it 

is now the default modeling approach in state-of-the-art HMM 

synthesis systems. However, although good performance can 

be achieved using MSDHMMs, this type of mixed distribution 

F0 modeling has some issues arising from the discontinuities at 

the boundaries of unvoiced regions and the need to keep the 

discrete and continuous density regions distinct. Therefore, the 

use of MSDHMMs makes it more difficult to exploit standard 

techniques for HMM modeling, such as adaptation, which 

cannot be readily applied to the mixed discrete or continuous 

F0 distributions.  

     From this consideration, we have developed a corpus-based 

method of synthesizing F0 contours in the framework of the 

generation process model, which represents continues sentence 

F0 contours as a superposition of tone components on phrase 

components [10]. By handing F0 contours in the F0 model 

framework, a clear relationship is obtainable between 

generated F0 contours and their background linguistic (and 

para-/non-linguistic) information, enabling “flexible” control 

of prosodic features. And in Mandarin, there is a clear set of 

constraints on the phonetic structure of each syllabel. Initials 

may be consonants or vowels, medials are vowels, and finals 

are vowels or nasals. Usually initials can be divided as voiced 

or unvoiced consonant, and all medials and finals are voiced in 

Mandarin. We can use the phoneme information for VU 

decision.  

     The rest of the paper is organized as follows. In section 2, 

the generation process model of F0 contours for Mandarin 

utterances is introduced. In section 3, after a brief discussion 

of F0 extraction errors in Mandarin syllable of Tone 3 and 

Tone 4, the conventional F0 modelling and generation in 

HMM-based synthesis system is reviewed. In section 4, we 

present our method of F0 modelling in HMM-based synthesis 

using generation process model. In section 5, experiment 

result is described and in section 6, we give our conclusion. 



2. A Model for Generation Process of F0 

Contours of Mandarin Utterances 

The generation process model is a command-response model 

that describes F0 contours in the logarithmic scale as the 

super-position of phrase components, accent components (or 

tone components for tonal languages) and a baseline level Fb. 

The exact relationships between these components of an F0 

contour and the underlying linguistic information have been 

formulated by Fujisaki and his coworkers [10]. The model 

diagram for Mandarin is shown in Figure 1, where the phrase 

commands (impulses) produce phrase components through the 

phrase control mechanism, giving the global shape of the F0 

contour at sentence level, while the tone commands (pedestals) 

generate tone components through the tone control mechanism, 

characterizing the local F0 changes. Both mechanisms are 

assumed to be critically-damped second-order linear systems.  

     In this model, the F0 contour is expressed by 

 

    loge𝐹0 t = loge𝐹𝑏 +  𝐴𝑝𝑖𝐺𝑝 𝑡 − 𝑇0𝑖 
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                      +  𝐴𝑎𝑗 {𝐺𝑎 𝑡 − 𝑇1𝑗  − 𝐺𝑎(𝑡 − 𝑇2𝑗 )}
J

j=1
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     𝐺𝑝 𝑡 =  
𝛼2𝑡 𝑒𝑥𝑝 −𝛼𝑡 ,                                 for 𝑡 ≥ 0,
0,                                                        for 𝑡 < 0

     (2) 

 

     𝐺𝑎 𝑡 =  
min 1 −  1 + 𝛽𝑡 exp −𝛽𝑡 , 𝛾 , for 𝑡 ≥ 0
0,                                                         for 𝑡 < 0

     (3) 

      

     where Gp(t) represents the impulse response function of the 

phrase control mechanism and Ga(t) represents the stop 

response function of the tone control mechanism.  

   

 
     Figure 1: A Functional model for the process of generating 

F0 contours. 

     

     The model consists of the following parameters:  Api and 

T0i denote the magnitude and time of the ith phrase command 

respectively, while Aaj, T1j and T2j denote the amplitude, onset 

time and offset time of the jth tone command respectively. The 

constants α, β and γ are set at their respective default values 

3.0 (1/s), 20.0 (1/s) and 0.9 respectively in the current study.  

     Unlike most non-tone languages, e.g. English and Japanese, 

Mandarin requires both positive and negative tone commands. 

In Mandarin there are four lexical tones and a neutral tone: T1 

(high tone), T2 (rising tone), T3 (low tone), T4 (falling tone) 

and T0 (neutral tone). These tones are attached to each syllable. 

As shown in Figure 1, T1 to T4 are assumed to correspond to 

their respective tone command patterns (intrinsic patterns): T1 

(positive), T2 (negative followed by positive), T3 (negative) 

and T4 (positive followed by negative). For T2 and T4, the 

offset of the 1st tone command is assumed to coincide with the 

onset of the 2nd tone command. The command pattern for T0 

is assumed to depend on the context and usually have reduced 

amplitudes. Figure 2 shows an example of F0 contours of a 

Mandarin utterance that are generated by extracted tone and 

phrase parameters. By handing tone and phrase commands in 

the generation process model frame-work, a clear relationship 

is obtainable between generated F0 contours and their 

background linguistic (and para-/non-linguistic) information, 

enabling flexible control of prosodic features. 

     A prior knowledge of VU or UV switch in Mandarin is that, 

each syllable or we could call it each Chinese character has the 

phonemic structure of a single vowel or a consonant followed 

by a vowel. So there will be no more than one VU or UV 

switch during one syllable period. 

 

 
     Figure 2: An example of F0 contour of Chinese utterance 

"ta1 yi1 jiu3 san1 er4 nian2 si4 yue4 chan1 jia1 zhong1 guo2 

gong1 nong2 hong2 jun1 (He joined the Chinese Workers’ and 

Peasants’ Red Army in April 1932.)." From top to bottom: 

observed F0 contour with its generation process model 

approximation, tone components/commands, and phrase 

components commands. 

3. Conventional Pitch Tracking Method 

and F0 Modelling in HMM-based TTS 

System 

In recent HMM-based synthesis, which need large corpus for 

training, an automatic pitch tracking method is needed. And a 

common assumption is that F0 has a continuous value in 

voiced regions and no value in unvoiced regions.  

     Firstly, ESPS RAPT algorithm is successful in automatic 

pitch tracking, and can alleviate F0 extraction errors such as F0 

halving and doubling, and voiced/unvoiced swapping. But still 

as we look into pitch tracking of Mandarin syllables, the 

tracking errors occur more often in vowels of T3 and T4. 

Because the pitch of those syllables can be very low and 

somewhat are not strong in periodicity. 

 

 
  Figure 3: An example of F0 contours of Mandarin syllable 

“sa4”. From top to bottom: original wave, F0 by manually 

check, F0 calculated by RAPT algorithm. 



 
   Figure 4: An example of F0 contours of Mandarin syllable 

“zou3”. From top to bottom: original wave, F0 by manually 

check, F0 calculated by RAPT algorithm. 

 

     Figure 3 and Figure 4 show comparison of target F0 and F0 

extracted by ESPS RAPT algorithm. At the end of vowel “a” 

in T4 and diphthong “ou” in T3, pitch detection algorithm fails 

to find F0 in voiced region. Thus these fails in the syllables 

will lead to a shorter duration of the vowel and sometimes 

noisy sound inside a vowel when re-synthesis. And more 

unvoiced utterances will occur in the synthesized speech from 

a HMM-based TTS and lead to unnatural sound. 

     Furthermore, in HMM-based speech synthesis system, the 

Voiced/Unvoiced (VU) decision of each state is independently 

made based on the multi-space distribution of F0 parameters of 

that state. The MSD of F0 parameters of one state is estimated 

by traversing the decision tree by the contextual features till a 

leaf node. Due to some pitch tracking errors or some bad 

pronounced vowels, one leaf of the state belong to a vowel 

may contain more unvoiced occurrences than voiced 

occurrences.  Thus, if choosing that leaf, the state will be 

decided as an unvoiced. Then the voice quality degrades not 

only because of the error pitch tracking, but also of the error 

VU decisions in HMM training.     

     In order to simultaneously model the discrete VU decision 

and the continuous F0 trajectory variables, multi-space 

distribution HMMs (MSDHMM) are commonly used [9]. The 

state output distribution in an MSDHMM is  

 

bθ o =  
cv𝒩 o; μθ , σθ  o ∈ voiced region,

  cuv ,                       o ∈ unvoiced region
          (4) 

 

                     cv + cuv = 1                                                (5) 

     where o is the observation at state θ,  cv and cuv are the 

probabilities of voiced and unvoiced regions, µθ and σθ are the 

means and variances of Gaussian distribution of F0 in the 

voiced regions. This MSDHMM framework results in some 

inherent limitations. Since bθ (o) represents a continuous 

density in voiced regions and a discrete probability mass in 

unvoiced regions, each observation can only be either voiced 

or unvoiced, but not both at the same time. Consequently, 

during the forward-backward calculation for any F0 stream in 

training, the state posterior occupancy will always be wholly 

assigned to one of the two components depending on the 

voicing condition of the observation. This hard assignment 

limits the ability of the unvoiced component to learn from 

voiced data and vice versa, and it prevents any possibility of 

using a soft assignment to reduce the effect of F0 estimation 

errors.   

     It’s also hard for this state-of-art HMM-based TTS to 

handle prosodic features especially at the phrase or sentence 

level. In this method, both segmental and prosodic features of 

speech are processed together in a frame-by-frame manner. 

Prosodic features cover a wider time span than segmental 

features, and should be treated differently. 

4. F0 Modelling in HMM-based TTS using 

Generation Process Model 

The previous sections highlighted the Generation Process 

Model which can generate continuous F0 contours, handling 

F0 contours with their background linguistic knowledge and 

the problems encountered in HMM-based TTS when F0 values 

were mis-calculated in voiced regions, discrete probability 

mass for unvoiced regions. In the model that we proposed in 

this section, we used Generation Process Model to generate 

continuous F0 contours and assumed to exist in unvoiced 

regions, together with the VU decision of phoneme 

information.  

     In order to investigate the validity of our proposed method 

of continuous F0 contours generation when it is applied in a 

HMM-based TTS system, a full speech synthesis algorithm 

was constructed as show in Fig. 5.  

    

 
   Figure 5: A HMM-based TTS with Generation Process 

Model and U/V decision 

 

     Here we defined Mandarin phoneme with either voiced or 

unvoiced as show in Table 1. In some respects, the phonemic 

structure of Mandarin is quite simple. It’s either a consonant-

vowel (CV) structure or single vowel (V) structure. Mandarin 

contains 21 consonants, 5 semi-vowels, 4 diphthong vowels, 

and 14 monophthong vowels. We can define them either 

voiced or unvoiced depending on the pervious knowledge of 

their waveforms.     

     After labeling each phoneme with VU decision, together 

with the F0 values estimated from an ESPS waves-based F0 

contours, Fujisaki parameters will be extracted by a FujiPara-



Editor [11]. Then a continuous F0 contour can be generated 

using Generation Process Model. We could select the 

continuous F0 contour as the F0 observation for the unvoiced 

frames.  

 

Table 1. Mandarin Initial and Tonal Final units with 

Voiced/Unvoiced decision 

Unvoiced 

Initials 

  b, c, ch, d, f, g, h, j, k, p, q, s, sh, t, 

  x, z, zh 

Voiced Initials  ga, ge, go, l, m, n, r, w, y 

Voiced Tonal 

 Finals 

   a, ai, an, ang, ao, e, ei, en, eng, er, i, ia, 

ib, ian,iang, iao, ie, if, in, ing,iong, iu, 

o, ong, ou, u, ua, uai, uan, uang, ui, un, 

uo, v, van, ve, vn 

      

     Together with extracted spectral parameters, the continuous 

F0 contours will be applied to a HMM-based TTS. In the 

synthesis stage, the VU decision will be made based on the 

phonemic information and white noise will be used as 

unvoiced excitation source to synthesize the unvoiced frames. 

     By making the continuous F0 using the generation process 

model, the problems in section 3 are effectively addressed. 

Since the mis-calculated F0 can be fixed before training, and 

also there is only one single F0 stream, there are no redundant 

component weights parameters.  

5. Experiment 

To evaluate the performance of our proposed method compare 

to the MSDHMM, a manually checked female speaker’s 

corpus is used for both methods. Prof. Renhua Wang, from the 

University of Science and Technology of China provided us 

the Mandarin speech corpus. The labels of unvoiced initials 

are used as the boundaries of VU switch. The input text to the 

system includes symbols on pronunciation and prosodic 

boundaries, which can be obtained from orthogonal text using 

an NLP system, developed at University of Science and 

Technology of China [12]. 

     As for the HMM-based method, the HMM-based Speech 

Synthesis toolkit (HTS Ver.2.1) is used [13].  The MSDHMM 

generates F0 together with 24-order mel-cepstrum coefficients.   

     The ESPS RAPT algorithm is used for automatic F0 

extraction. Before training, we found that all most 22.37% 

syllables of the total have the error VU decisions. And among 

all those errors, 33% failures are occurred in T4 and 39% are 

in T3. After training process of MSDHMM, this error will be 

increased.  

 

 
Figure 6: Error VU decisions for Mandarin syllables in 

different tones  

    

We use the FujiParaEditor to find continuous F0 contours 

for the corpus. Figure 7 shows an example of our method 

compared to the conventional pitch tracking method. We can 

see that during a voiced vowel “i” in T4, the conventional 

method failed to find F0 values in the voiced regions. 

 
Figure 7: An example of the continuous F0 contours for the 

Mandarin word “l+i4 sh+i2”. The spot line is by ESPS 

algorithm and the continuous line is by our method. 

6. Conclusion 

In this paper, we proposed a method to generate continuous F0 

contours for HMM-based speech synthesis by applying the 

generation process model. It can fix the VU errors of F0 before 

training, and assume that F0 values are exist in unvoiced 

regions so there is only one single stream of F0 in HMM. Then 

there are no redundant component weights parameters. A prior 

linguistic knowledge of phonemes of Mandarin is used for the 

VU decision at the synthesis stage. The VU errors are fixed 

before HMM training. And compared to MSDHMM, there 

will be no more unvoiced frames during the voiced regions.  
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