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Abstract—An unsupervised joint prosody labeling and modeling 
(PLM) method for exploring the prosody of spontaneous Mandarin 
speech is proposed. It is designed to automatically label a speech 
corpus and construct prosodic models simultaneously. Experimental 
results on a large dialog corpus confirmed its effectiveness. Many 
meaningful characteristics of spontaneous-speech prosody were 
investigated from the parameters of the well-trained prosodic models. 
The prosodic feature patterns of high-level constituents of the 
postulated prosody hierarchy were derived. An analysis of 
disfluencies related to the labeling results was also discussed. Those 
findings would provide rich prosodic information for various speech 
processing applications. 

I. INTRODUCTION 
In recent years, prosodic information are widely used in 

spontaneous speech processing for the detection of 
disfluencies and sentence-like boundaries [1-2], the 
segmentation of dialog acts [3], the improvement of automatic 
speech recognition (ASR) [4], etc. But the research progress is 
still very limited because of the following two difficulties. 
One is the need of preparing a large spontaneous speech 
corpus with prosody tags being properly labeled. Another is 
the lack of a sophisticated prosody modeling method. 

In this paper, an unsupervised joint prosody labeling and 
modeling (PLM) method for spontaneous Mandarin speech is 
proposed. It is an extended version of the previous PLM 
method [5] proposed for read Mandarin speech. It labels a 
speech corpus with two types of prosody tags, the break types 
of inter-syllable junctures and the prosodic states of syllables, 
and builds eight prosodic models automatically. These two 
types of prosody tags are used to construct a prosody 
hierarchy of Mandarin speech, while these eight prosodic 
models are used to describe the relationships of acoustic 
prosodic features, prosody tags of utterances, and the 
linguistic features of the associated texts.  

The remaining of the paper is organized as follows. Section 
II presents the proposed PLM method. Section III introduces 
the speech corpus used in this study. Section IV discusses the 
experimental results. Some conclusions are given in the last 
section. 

II. THE PROPOSED METHOD 
A prosody hierarchy [5,6] shown in Fig. 1 is adopted for the 

speech prosody study. It employs four layers to describe the 
prosodic constituents for the normal fluent speech part, while 
it uses two layers for the other particular sound parts like 
disfluencies, particles, uncertain pronunciation, and over-
lengthening due to hesitation. The layers are syllable (SYL), 
prosodic word (PW), prosodic phrase (PPh), and breath 
group/prosodic phrase group (BG/PG) for normal speech; and  

SYL and particular prosodic constituent (PPC) for particular 
sound. Two kinds of prosody tags are employed to structure 
the prosody hierarchy. One is a set of ten break types of 
syllable juncture, Bn ∈{B0, B1, B2-1, B2-2, B2-3, B3, B4, 
BPI, BP, BPO}, used to delimit these prosody layers. Here, 
B0 and B1 represent an intra-PW boundary with adjacent 
syllables being tightly and normal coupled; B2-1, B2-2 and 
B2-3 are divided from B2 and defined as a PW boundary with 
obvious F0 reset, perceived short pause and pre-boundary 
lengthening; B3 and B4 represent major breaks with median 
and long pause durations, respectively; BPI, BP, and BPO 
represent entrance, intermediate, and exit of PPC, respectively. 
The prosodic state is used to characterize the variation of a 
prosodic feature of a syllable in a prosodic constituent. In this 
study, three separate types of prosodic state are used, 
respectively, for the three prosodic features of syllable log-F0 
contour spn, syllable duration sdn, and syllable energy level sen.  

Fig. 1.  The prosody hierarchy for Mandarin spontaneous speech. 

Some inter-syllable acoustic features are extracted to 
characterize the break type of syllable juncture, including 
pause duration pdn, energy-dip level edn, normalized pitch 
jump pjn, and normalized duration lengthening factor dln. 
Besides, some linguistic features related to speech prosody are 
also extracted from the associated texts. They include lexical 
tones tn, base-syllable type sn, final type fn of syllable n, and 
some high-level features ln around syllable n for normal 
speech; and syllable-like classes prn for particular sound.  

The proposed PLM method is formulated as a parametric 
optimization problem to find the best of prosodic tag sequence 
T={ nB , np , nq , nr |n=1~N} given with the acoustic feature 
sequence A={spn, sdn, sen, pdn, edn, pjn, dln| n=1~N} of the 
input speech utterance and the linguistic feature sequence 
L={ln, tn, sn, fn, prn|n=1~N } of the associated text:  
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-1( | , , )n
n n nP p Bsp L , -1( | , , )n

n n nP sd q B L , and -1( | , , )n
n n nP se r B L  are, 

respectively, syllable pitch contour, duration and energy-level 
models; 1 1( | , )n n nP p p B− − , 1 1( | , )n n nP q q B− −  and 1 1( | , )n n nP r r B− −  
represent pitch, duration and energy prosodic state transition 
models; ( , , , | , )n n n n n nP pd ed pj dl B l  is the break-acoustics 
model describing the relationship of various intersyllable 
acoustic features with break and linguistic features; ( | )n nP B l  
represents the break-syntax model that build the relationship 
between break type and linguistic features. 

The three syllable prosodic feature models are then 
elaborated to consider some major affecting factors that 
control their variations:  
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where xβ , xγ  and xα  represent the affecting patterns (APs) 
of affecting factor x for syllable pitch, duration and energy 
models, respectively; μ / dμ / eμ  and R / dR / eR  denote 
respectively the global means and the covariances of residuals. 
In the practical realization, tone with coarticulation APs, i.e. 
{ xβ , xγ , xα |x= 1

1 1,
n n

n nt B
+

− − }, are obtained from decision trees for 
each current tone (tn) constructed by a question set. 

A special training procedure is designed. It first employs a 
sequential optimization to label prosodic tags and determine 
model parameters for the normal speech part of the unlabeled 
corpus. Then, the global means of normal speech models are 
used to assist in labeling prosodic tags and determine model 
parameters for the particular sound part. The reasons of 
adopting the special training procedure are stated as follows. 
First, it can prevent the training from being dominated by the 
particular syllable-like sounds which have wilder prosody 
variability. Second, using the same global means of normal-
speech prosodic models in the training of particular sound part 
makes their APs have the same bases to compare. 

III. EXPERIMENTAL DATABASE 
The database used consists of eight dialogue sessions 

selected from the Mandarin Conversational Dialogue Corpus 
(MCDC) [7] collected by the Institute of Linguistics of 
Academia Sinica, Taiwan. Its total length is about ten hours 
(121,242 syllables). It consists of 3,501 dialogue turns. The 
eight dialogue sessions were uttered by nine female and seven 
male speakers, and transcribed into Chinese texts with some 
other tags including discourse marker (DM), particles, and 
pauses by professional linguist annotators. Some important 

spontaneous speech phenomena were also annotated. They 
include disfluencies, particular pronunciation, discourse-
related items, and sociolinguistic phenomena.  

The preprocessing of the corpus included forced-alignment 
into syllable sequences, pitch detection, frame- and syllable-
wise speaker normalizations of pitch and duration/energy 
levels, and representation of syllable pitch contour by four 
coefficients of orthogonal transformation. 

IV. EXPERIMENTAL RESULTS 
The experiment was conducted on the MCDC corpus. The 

number of prosodic states was empirically set to be 20 
including 16 for normal speech and 4 for PPC. The training 
took 59 iterations to reach a convergence.  
A. Analyses on Model Parameters  

Table I displays the total residual errors (TREs) which are 
the percentage of sum-squared residue of log-F0/syllable 
duration/syllable energy level over the observed sum-squared 
counterparts with respect to the use of different combinations 
of affecting factors. As shown in the table, TRE is reduced as 
more APs were used. The lower-level APs (i.e., tone with 
coarticulation, base-syllable, final type, and particular 
syllable-like types) accounted for 9.4%/16.3%/13.2% of 
prosodic variation in pitch/duration/energy level for the 
normal speech part, and 11.9%/3.4%,/8.6% for the particular 
sound part. The high-level prosodic constituents contributed 
another 76.5%/82.0%/84.3% and 39.8%/82%/47.2% for these 
two parts. Obviously, the contributions of low-level APs are 
relatively small. 
TABLE I: TRES (%) OF THE SYLLABLE PITCH CONTOUR, DURATION AND 
ENERGY LEVEL MODEL W.R.T. THE USE OF DIFFERENT COMBINATIONS OF 
APS FOR (A) NORMAL SPEECH PART AND (B) PATICULAR SOUND PART. 

APs Pitch Duration Energy
+Tone with coarticulation 90.6 94.0 94.3 
+Base syllable/final  83.7 86.8 

(A)

+Prosodic state 14.1 1.7 2.5 
APs Pitch Duration Energy
+Particle Class 88.1 96.6 91.4 (B)
+Prosodic State 48.3 18.6 44.2 

 
Fig.2 shows the syllable duration APs of 5 tones, 82 

reduced base-syllable types, and 24 particular syllable-like 
classes. As expected, Tone 3 is shorter and Tone 5 is 
shortened seriously. Most APs of particular syllable-like 
classes are lengthened, while only three (particles of “GE”, 
“O”, and uncertain pronunciation) are shortened. 
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Fig. 2:  The syllable duration APs of (a) tone, (b) base syllable, and (c) 
particular syllable-like type. 

Fig.3 displays the prosodic state APs for normal speech 
(State 1 to 16), particular sound (State 17 to 19), and over-
lengthening syllable (State 20). As shown in Fig. 3(b), the 



over-lengthening syllable owing to hesitation has very large 
duration AP. From Fig. 3(c), State 17, corresponding to deep 
pronunciation of particle filler, has very small energy AP. 

0 5 10 15 20
-1

-0.5

0

0.5

Pitch prosodic state p

Lo
gF

0

(a)

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Duration prosodic state q

se
c

(b)

0 5 10 15 20
-30

-20

-10

0

10

20

Energy prosodic state r

dB

(c)

 
Fig. 3:  The syllable (a) pitch, (b) duration and (b) energy APs of 16 normal-
speech prosodic states and 4 particular syllable-like prosodic states. 

Fig. 4 displays the distributions of 4 inter-syllable acoustic 
features for the seven break types of normal speech. Generally, 
break types of higher level were generally associated with 
longer pause duration, lower energy dip, larger normalized 
pitch jump, and larger normalized lengthening factor. These 
findings conform to our knowledge about break types. 
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Fig. 4:  The pdfs of (a) pause duration, (b) energy dip, (c) normalized pitch 
jump and (d) normalized lengthening factor for these 7 break types. Numbers 
in () denote the mean values. 

From the prosodic state transition model of pitch 
1 1( | , )n n nP p p B− − , we found that B4 and B3 have significant 

pitch resets across the syllable boundary, and B2-1 also has 
obvious pitch resets. For B0 and B1, the general high-to-low, 
nearby-state transitions showed that the syllable log-F0 level 
declined slowly within PWs. For B2-2 and B2-3, no apparent 
pitch reset exists. 

From 1 1( | , )n n nP q q B− − , we found that the significant high-to-
low transitions of B3 and B4 showed that PPhs and BG/PGs 
usually begin with lower states and ended with higher states to 
manifest the significant duration lengthening effect before 
major break junctures. B2-3 also had large high-to-low 
transition to imply the pre-boundary lengthening of minor 
break junctures. 

The break-syntax model ( | )n nP B l  was built by the decision 
tree method using a linguistic question set. From the resulting 
decision tree, we found that most intra-word junctures were 
labeled as non-break B0 and B1. For inter-word junctures, 
their labelings were complicated. They were likely labeled as 
B2-1, B3, or B4 if the following word is a conjunction; as B2-
1 and B1/B0 if it preceded or followed a pronoun. 

B. Analysis on Speech Flow 
1)  Normal Speech 

Table II lists the average lengths of PW, PPh, and BG/PG. 
Both the average lengths of PW and PPh were comparable to 
those of read speech [5], while the average length of BG/PG 
was much shorter. Two reasons caused BG/PGs to be shorter. 
One is that many speech turns are very short in this dialogue 
corpus. Another is due to the use of PPC in the postulated 
prosody hierarchy. 

TABLE II: AVERAGE LENGTHS OF PW、PPH AND BG/PG. (UNIT:SYLLABLE) 
PW PPh BG/PG 

mean std mean Std mean std 
2.55 1.92 5.23 5.89 6.27 8.74

To explore the general prosodic feature patterns of PW, 
PPh, and BG/PG for normal speech, we first extract the 
normalized prosodic feature by eliminating influences of tone, 
base-syllable type, final type, and the global means. For pitch 
feature, we obtain 

1
1 1,n n

n n
n n t B+

− −
= − −pm sp β μ                                                          (6) 

Sequences of (1)npm delimited by B2/B3/B4 at both sides are 
regarded as prosodic patterns formed by integrating the log-F0 
level patterns of PW, PPh, and BG/PG. A superposition model 
is therefore defined by 

/(1) (1) (1) (1) (1)
n n n

r
n n PW PPh BG PG= + + +pm pm β β β                  (7) 

where r
npm  is the residual; xβ  represents APs of affecting 

factor x; ( , )nPW i j= ,  ( , )nPPh i j= , and / ( , )nBG PG i j=  
denote that syllable n is located at the j-th place of an i-
syllable PW, PPh, and BG/PG, respectively. A sequential 
optimization procedure based on the MMSE criterion is 
adopted to train the model. The patterns of PW, PPh, and 
BG/PG for duration and energy are similarly calculated. 

Fig. 5 displays syllable duration patterns of PW, PPh and 
BG/PG. From Fig. 5, we found that the last syllables of all 
PPh and PW patterns were lengthened significantly, while 
those of most BG/PG patterns were shortened. These finding 
are similar to those of read speech [5,6]. For log-F0 level 
patterns, both PW and PPh are of falling patterns. We also 
find that BG/PGs have flat patterns with small dynamic range. 
Lastly, the energy patterns of these three prosody constituents 
are very similar to those of log-F0 patterns.  
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Fig. 5:  The duration patterns of BG/PG, PPh and PW. 

A typical prosody labeling example is given in Fig. 6. It can 
be found from the figure that the utterance is divided into 



many PWs of 1-4 syllables. Most PWs are delimited by B2-1 
with pitch reset. The insertion of the first B2-3 is due to 
hesitation. A major break B3 is set at the end of the first 
sentence. The speaker produces a DM (NE GE) with flat pitch 
and then followed by a PW “ji-long-yi-lan” with pitch accent 
to emphasize it. This example shows that our method 
functions quite well for automatic prosody labeling. 
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Fig. 6: A prosody labeling example: it shows the observed (solid diamond) 
and prosodic state+global mean (open circle) of syllable log-F0 level (Upper), 
duration (middle) and energy level (lower). The utterance is “O(O) wo3-
men2(our) jia1-shi4(family is) ru2-guo3-yao4(if we want to) chu1-qu4-de5-
hua4(have a trip), dou1-hui4-pau3(always go) bi3-jiao4(quite) yuan3(far) 
pau3-dao4(go to), NE GE(NE GE) ji1-long2-yi2-lan2(Keenlong and Yilan) 
na4-bian1-qu4(there).”. 

2)  Edit Disfluencies 
The structure of edit disfluencies can be expressed by 

(reparandum) * [editing term] correction 
Here, ‘*’ indicates an interrupt point (IP). We now analysed 
three major types of IP: repetition, repair and restart. Their 
counts are 1379, 362, and 764. Fig. 7 displays the distribution 
of break tag labeling results. We found that all the three types 
of IP are more likely to be labeled as minor or major breaks 
than regular syllable junctures. Moreover, both repair and 
restart have more major breaks and B2-2 to show that they are 
likely to have long pause duration. On the contrary, most 
repetitions with B0/B1 are pragmatic repetitions.  
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Fig. 7.  IP corresponds to distribution of the break type 

Fig. 8 displays the normalized prosodic feature patterns of 
reparandum and correction for repetition, repair, and restart 
IPs with different lengths. From Fig 8(a), the beginning pitch 
levels of corrections for the three types of IP are likely to be 
reset to the beginning pitch levels of reparandums. From Fig. 
8(b), the pre-IP lengthenings of reparandum are reset and 
shortened for the beginning syllable of correction. From 
Fig.8(c), the beginning energy levels of correction for both 
repair and restart are likely to be reset to higher levels than 
those of reparandum. These findings match well with those of 
Tseng [8]. 
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Fig. 8: (a) Log-F0, (b) duration and (c) energy patterns of reparandum and 
correction for repetition IP (solid line, solid diamond), repair IP (dotted line, 
open circle), and restart IP (dashed line, plus marker) with different lengths. 

V. CONCLUSION 
In this paper, an unsupervised joint prosody labeling and 

modeling (PLM) method for spontaneous Mandarin speech 
has been discussed. Experimental results on the MCDC 
corpus showed that rich and meaningful prosodic information 
can be explored from the well-trained prosodic models as well 
as from the automatically-labeled prosody tags. We believe 
that those findings should be beneficial to other spontaneous- 
speech. applications. 
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