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Abstract

In this paper we analyze three different approaches to improving
the quality of an HMM-based speech synthesizer by means of
an external duration model. The first approach uses the external
duration model in a standard way to define the phone duration
during synthesis. The second is a novel approach that uses the
phone duration to create additional context features for the deci-
sion trees clustering. The third is a combination of the previous
two approaches. A subjective evaluation showed a quality im-
provement with respect to the baseline for all three approaches,
although for differing reasons. The standard approach produces
an improvement in the duration estimation. The second ap-
proach degrades the duration estimation but improves the logF0
and aperiodicity by better modeling of their dependencies with
respect to the duration. Finally, the combined approach bene-
fits from the improvements of the other two and yields the best
result of ca. 16% higher preference than the baseline among
native English speakers.
Index Terms: speech synthesis, prosody, duration, HMM-
based, external duration model

1. Introduction
Duration, pitch and power are the three main components of the
prosodic signal. The duration defines the rhythm and speed in
which a sentence is spoken: which sounds are longer, which
shorter, which part of the sentence has to be pronounced faster,
which slower, etc. The most important factors for the dura-
tion are phonological: phonetic sequence, stress, etc. However,
speakers also use the duration to communicate other types of in-
formation such as the structure of the sentence, which part of the
discourse is most important, etc. As such, other factors such as
syntax and semantics need to be considered as well in order to
correctly estimate the phone duration of an utterance. For a text-
to-speech (TTS) system, this implies that an accurate duration
model is essential in order to synthesize natural and intelligible
speech. Many types of machine learning techniques have been
applied to predict the speech durations: Bayesian networks [1],
linear statistical models [2],[3], neural networks [4], classifica-
tion and regression trees [5], etc. In this paper we study du-
ration modeling in the framework of HMM-based speech syn-
thesis [6], and the possibility to improve it by using an external
duration model.

The rest of the paper is organized as follows. Section 2
describes how the duration is modelled in HMM-based speech
synthesis, its problems, and the standard way to integrate an
external duration model. Section 3 explains a new approach
to integrate an external duration model into HMM. Section 4
describes a subjective evaluation we conducted to assess the ef-
fectiveness of the different approaches. Section 5 discusses the

possible causes of the results and finally in section 6 we draw
conclusions based upon these results.

2. HMM duration model
In HMM-based synthesis, F0, duration, spectrum and aperiod-
icity are modelled simultaneously at the frame level. In its orig-
inal implementation [6], the duration model was created at the
end of the training process, by clustering in a decision tree the
occupancy statistics of the acoustic models obtained in the last
expectation-maximization (EM) iteration. This way of model-
ing the duration introduced a lack of consistency between train-
ing and synthesis: the state duration was modelled by an expo-
nential distribution during training but a Gaussian distribution
during synthesis. This inconsistency was solved in HSMM [7]
by integrating the Gaussian model of the state duration within
the EM training. Although this modification helps to improves
the total quality, the duration estimated by HSMM is still worse
than the one estimated by other machine learning methods. In
a preliminary experiment, we compared the duration predicted
by a 3-state HSMM model and a a Quantification method type
1 (QMT1) model [8]. The root mean square error (RMSE) and
the relative RMSE (percentage of the error with respect to the
phone duration) that we obtained were 34.25ms and 31.15% for
HSMM versus 27.5 ms and 29.5% for the QMT1 model.

If we consider the manner of modeling the duration in the
HMM/HSMM framework we find two problems. The first is
that although the duration is a prosodic signal, it is modelled
at a sub-segmental level (the state). No constraints at a higher
level are considered, and supra-segmental information is used
only implicitly in the decision tree clustering. The second prob-
lem is that in order to model the duration at a state-level, it is
represented as a vectorial variable with a dimension equal to the
number of states of the hidden Markov model. The reason for
using such state-level model is that in HMM/HSMM-based syn-
thesis, the duration model defines the state sequence that will be
used to to synthesize the other streams (spectrum, aperiodicity
and F0). During the clustering of the duration models, the error
that gets minimized is the average vectorial distance of the clus-
ter models and its centroid. At a segmental level, the duration
of some phones does indeed contain some vectorial component,
for example in the initial and final part of a diphthong, or the
closure/burst/aspiration of plosives. However, from a prosodic
point of view, duration is primarily consider as a scalar variable.
This means that the main goal of the training process should be
to reduce the error between the predicted scalar value and the
real one. Although scalar and vectorial distance are strongly
correlated, they are not the same. Figure 1 shows the differ-
ence between clustering based on a scalar and a vectorial di-
mension in a hypothetical two-state HMMs1, s2. If the models
are clustered based on their vectorial value,d1 will be clustered



Figure 1:Difference between clustering a vectorial and a scalar
variable
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the one with total durationD′. In order to alleviate this prob-
lem, other researchers have tried to combine the state-duration
model with some external duration models at higher linguistic
levels, such as the phone [9], or even longer units [10]. In these
approaches, the models are combined by simultaneously max-
imizing the log-likelihoods of the HMM state-level model and
the external higher-level model.

.

2.1. Explicit phone duration

To integrate an external duration model into HMM-synthesis,
the standard way is to explicitly force the generation algorithm
to use the phone duration predicted by that model [11]. In this
way, the state-level duration model is only used to distribute
the given phone duration among the states. The solution is ob-
tained from the maximization of the log-likelihood of the state-
duration vectord under the constraint

S
X

s=1

ds = T (1)

whereS is the total number of states andT is the duration that
we want for theS-states sequence, i.e. the external phone du-
ration. Assuming that the state-duration model of a phone is
Gaussian with meanµ and diagonal covariance matrixΣ, the
solution to this maximization is

d = µ + ρ · diag(Σ) (2)

with ρ

ρ =
T −

P
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µ

s

trace(Σ)
(3)

3. Implicit phone duration
In the HMM-based synthesis framework, the duration defines
the state sequence but not the statistical model that should be
associated with each state. In unit selection synthesis on the
other hand, the duration is one of the most important factors in
the selection of the units. The are two reasons for this. The
first one is to reduce the distortion introduced by the signal pro-
cessing required to modify the unit length. The second reason
is because the characteristics of segmental and prosodic units

are considered to vary depending on their length. The implicit-
duration approach that we propose in this paper, is an attempt
to emulate this into the HMM framework. The idea is to use
the phone duration as an additional feature in the decision tree
clustering of the duration, spectrum, aperiodicity and F0 mod-
els. In this way, we can model the dependencies between these
streams and the total phone duration. In theory, a decision tree
should be able to learn any dependency of the phone duration
by using the same set of factors used to predict the duration.
In practice, this only occurs when the amount of training data
is infinite or very large. In the normal case the amount of data
is limited. Therefore, when the decision tree arrives at a node
where a duration question should be asked, it lacks the number
of samples required for all the additional splits that would be
needed to support the combination of factors on which the du-
ration depends. In that sense, a duration context feature can be
seen as a short-cut that encapsulates a complex combination of
several other features.

The implementation of the implicit-duration approach in
the current HMM framework is as follows: During the train-
ing, the phone durations are obtained from the force- or hand-
alignments of the training data. These durations are then quan-
tized and used to create features for the full-context labels that
will be used in the decision tree clustering. In our imple-
mentation we quantize the phone duration in units of 10ms (2
frames).During synthesis, the duration values estimated by the
external model are used to define the values of the duration fea-
tures for the full-context labels. These labels are then used to
select from the decision tree the sequence of acoustic models
associated with the input sentence.

4. Experiment and results
4.1. Compared models

We conducted a subjective evaluation to test the effectiveness of
three different ways to integrate an external duration model: ex-
plicit duration, implicit duration, and a combination of both. For
the experiment we used HTS [12] to train two HSMM models:
a baseline model based on the standard set of context features,
and an implicit-duration model that adds to the full-context la-
bels of the baseline phone duration features for current, previ-
ous and next phones. Both models were 5-states models. They
were trained on a speech database of approximately 5.5 hours
as spoken by a single US-English female speaker and sampled
at 16kHz. The observation vector consisted of three streams:
spectrum, aperiodicity and F0. The spectrum stream consisted
of 80 coefficients, 40 LSP coefficients (including gain) and their
delta. The LSP coefficients were calculated from a spectral
envelope obtained in a pitch synchronous analysis and resam-
pled with a 5ms. shift. The aperiodicity spectrum was ob-
tained using the pitch-scaled harmonic filter algorithm (PSHF)
[13] and encoded by a single parameter. This parameter indi-
cates the frequency from which the spectrum can be considered
fundamentally aperiodic. Its meaning is basically the same as
the ’maximum voiced frequency’ in the Harmonic plus Noise
Model (HNM) [14]. The aperiodicity stream consisted of this
parameter and its delta. Finally, the F0 stream consisted of the
logarithm of F0 and its delta. The F0 stream was modelled us-
ing a multi-space distribution (MSD) [15]

4.2. Objective evaluation

In parallel to the subjective evaluation, we calculated the objec-
tive phone duration error over a held out subset of the data. For



Table 1:Objective evaluation of the phone duration

Model Absolute RMSE Relative RMSE
HSMM Baseline 26.9ms 28.7 %

QMT1 22.04ms 21.58%
Implicit:real input 11.42ms 10.45%

Implicit:QMT1 input 54.73ms 62.34%

the implicit-duration model we computed the errors with two
types of duration input: real durations (non-realistic case), and
the durations as predicted by the QMT1 model. Table 1 shows
the results. The proportion between the RMSE of QMT1 and
the HSMM baseline are similar to those mentioned in Section
2. The RMSE of the implicit-duration model with real duration
corresponds to the quantization step. However, the RMSE of
the proposed implicit-duration with QMT1 input is higher than
we expected. The reason for this observation is the strong cor-
relation between the scalar phone duration feature at the input
and the vectorial output suggested by the low RMSE when us-
ing real duration. Due to such correlation, the RMSE of the
implicit-duration model with QMT1 input becomes higher than
the added RMSE of the QMT1 and HSMM baseline.

4.3. Subjective evaluation

4.3.1. Conditions

With each one of the two trained models, a set of 120 test sen-
tences were synthesized in two ways, first with the phone du-
ration provided by the HSMM state-level duration model, and
second by explicitly forcing the phone duration to be the one es-
timated by the external QMT1 model. As a result we obtained
four sets of stimuli. To evaluate the effectiveness of each ap-
proach we compared them in 4 subjective evaluations:

A Baseline vs. Explicit: Compare the speech generated by the
baseline model with and without explicit phone duration.

B Baseline vs. Implicit: Compare the speech generated by
the baseline and the implicit-duration model with the phone
duration given by their respective state-level models.

C Baseline vs. Implicit+Explicit: Compare the speech gener-
ated by the baseline with its own phone duration, with the
speech generated by the implicit-duration model with ex-
plicit phone duration.

D Explicit vs. Implicit: Compare the speech generated by
the baseline model with explicit phone duration versus the
implicit-duration model with its own duration.

For each evaluation a total of 10 subjects evaluated a set of 45
stimuli pairs in a preference test. They all were speech technol-
ogy experts. Subjects were allowed to choose a “None” option
if they judged both stimuli to be equal. For each subject the
pair of stimuli were randomly selected from the collection of
120 test sentences. Six of the subjects of each evaluation were
native English speakers, and the other 4 were highly proficient
English speakers who have been living for several years in En-
glish speaking countries. The average sentence length was 8.15
words. The external duration model was an improved QMT1
model trained using feature selection [16]. We found that the
phone durations predicted by the QMT1 model for the set of
test sentences was on average 7.5% shorter than those predicted
by the baseline duration model, and 3.74% shorter than those
predicted by implicit-duration model.

4.3.2. Results

Tables 2 and 3 show the results of the subjective evaluations
among all the subjects as well as among just the 6 native English
speakers. On the table,X andY refer to the first and second
model mentioned in the evaluation conditions.

Table 2:Results for all subjects

Eval. X None Y (X-Y) binary
model model 95% margin z-score err.

A 21.1% 49.8% 29.1% 8% ± 6.59% 4.48%
B 30.4% 30.7% 38.9% 8.5% ± 7.73% 3.57%
C 28.9% 30.2% 40.9% 12% ± 7.8% 0.55%
D 31.4% 32.1% 36.5% 5.1% ± 8.04% 15.24%

Table 3:Results for native English speaker

Eval. X None Y (X-Y) error binary
model model 95% margin z-score err.

A 20.7% 46.7% 32.6% 11.9% ± 8.82% 2.53%
B 33.3% 24.5% 42.4% 8.9% ± 10.42% 7.18%
C 27.8% 28.5% 43.7% 15.9% ± 10.26% 0.45%
D 32.4% 29.8% 37.8% 5.4% ± 10.97% 20.9%

Though small, the differences between the baseline and the
models that use external duration are significant in all cases ex-
cept for the “Baseline vs. Implicit” case among native English
speakers. Among native English speakers, the strongest im-
provement seems to come from the better duration estimation
provided by the explicit usage of the QMT1 duration. This re-
sult is interesting if we consider that the RMSE of the QMT1
model is less than one frame-shift better than that of the base-
line. Moreover, given this preference for such a duration dif-
ference, we should have had much lower preference for the
implicit-duration model in “Baseline vs. Implicit” and “Ex-
plicit vs. Implicit”. Yet, the preference for the implicit-duration
model was equal or higher than the baseline in the first test, and
not significantly different in the second, neither among native
English speakers nor among all the subjects. Looking at the
results, we notice that although the total preference differences
with respect to the “baseline” are almost the same for all three
approaches, the proportion of subjects who chose the “None”
option is significantly lower when the duration is used implic-
itly. In other words, the implicit-duration model produces more
audible differences. The explanation for this is that whereas the
usage of the external duration in an explicit way affects only to
the phone durations, its usage to select the models also affects
the other speech components. Therefore, the poorer duration
estimation of the implicit-duration model seems to get compen-
sated for by a better modeling of the dependencies between the
duration and the spectrum, logF0 or aperiodicity. This hypoth-
esis also explains why the combination of the “Explicit” and
“Implicit” approaches yields the highest preference with respect
to the baseline.

5. Discussion
To study in greater detail the effect of the duration on the spec-
trum, aperiodicity and F0, we analyzed the usage of the duration
questions in their decision trees. In HTS clustering, the order
in which nodes are split depends on the global increment on



Table 4:Usage of the duration question for state and stream

Stream - #tree Avg. leave Avg. question Proportion
state leaves appearance appearance
Cep1 620 397 428 107.8%
Cep2 666 420.5 386 91.8%
Cep3 841 533.7 423 79.3%
Cep4 682 436.6 394.7 90.4%
Cep5 607 396 398.7 100.6%

Ap1 847 518.9 397.7 76.7%
Ap2 1146 701.3 521.1 74.3%
Ap3 1448 887.2 572.9 64.6%
Ap4 1093 673.5 493.7 73.3%
Ap5 927 568.3 476.7 83.9%

logF01 920 575.3 480.6 83.4%
logF02 2151 1311.8 1074.2 81.9%
logF03 3152 1908.4 1483.8 77.8%
logF04 1805 1107.6 844.7 76.3%
logF05 1128 704.2 610.4 86.7%

dur 282 179.3 87.4 48.8%

maximum-likelihood that such splits provides. In other words,
the earlier the average appearance in the tree of a set of ques-
tions the higher the log-likelihood increment they yielded, and
thus the more important they are. To analyze the dependency
of each factor with respect to the duration, we computed the
average appearance position of the duration questions in the
clustering trees, and compared it with the average appearance
position of the tree leaf nodes. Table 4 shows the results of
this analysis. As expected, the earliest average appearance of
the duration questions is in the duration tree, around 50% of
the leaf nodes. One result of this high position is that small
errors in the input produced large errors in the output. In the
other three streams, the duration questions appear much later.
For the spectrum and aperiodicity trees, the average appearance
of the duration questions is earlier in the central state of the
phone and decreases toward the first and last state. This indi-
cates that the duration of current and surrounding phones is less
important at the transition between phones than in their central
part, especially for the spectrum. The average appearance in
the aperiodicity trees is higher than in the spectrum tree, which
suggests that the duration has a stronger effect on the glottal
source than on the vocal tract. The average appearance of the
duration question in the logF0 trees does not decrease toward
the model edges as sharply as in the aperiodicity and spectrum
trees, probably due to the suprasegmental nature of logF0. On
average, duration questions appear at around 80.1% of the way
into the logF0 tree. This relatively high dependency can explain
the audible prosody differences found between the stimuli syn-
thesized with the baseline model and those synthesized with the
implicit-duration model.

6. Conclusions
We have analyzed three possible ways to integrate an external
duration model in an HMM-based synthesizer: the standard ex-
plicit definition of the phone duration, a novel implicit-duration
approach that uses the external duration to select the synthesis
model, and a combination of these two methods. A subjective
evaluation comparing these approaches with a baseline HSMM-
model showed an small but significant improvement in all three

cases. However, the reason for the improvement is different for
each approach. In the explicit approach, the improvement is
the result of a better estimation of the phone duration by the
external duration model. In the implicit-duration approach, the
phone duration estimation is worse than the baseline, but the
modeling of the dependencies between phone durations and the
other speech components is better, especially for the aperiodic-
ity and logF0. Such better modeling results in a more audible
difference with respect to the baseline, which translates into ca.
20% less ’no-preference’ choices. In the combined approach,
the advantages of the other two are added. Consequently, it
yields the highest preference with respect to the baseline.
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