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Abstract 

The present research investigates automatic feature selection 

for phone duration prediction for computer text-to-speech 

(TTS), selecting from a large set of 242 candidate features.  

Two methods for avoiding overfitting the training data are 

evaluated.  Experiments with an American English voice 

corpus show that automatic feature selection using n-fold cross 

validation combined with a simple per-feature improvement 

threshold was able to achieve a duration prediction accuracy 

of 22.5 ms RMSE, a relative error rate reduction of 7.8% over 

a manually selected baseline feature set. 

Index Terms: speech synthesis, phone duration prediction, 

automatic feature selection, feature set 

1. Introduction 

The choice of feature set for machine learning (ML) 

algorithms is a critical component of their performance.  For 

phone duration prediction for text-to-speech (TTS) systems, 

much research has been conducted on the choice of algorithm 

[1-6], but less research has investigated the optimal input 

feature sets to these machine learners [3,7,8,9].  One powerful 

approach for choosing an optimal feature set is automatic 

feature selection, in which a subset of a set of candidate 

features is chosen automatically.  For phone duration 

prediction, a challenge for any selection method is the large 

number of potential features that could be tried, due to the 

large number of potentially relevant linguistic domains 

(phone, syllable, word, etc.).  This makes manual feature 

selection time-consuming and increases the possibility of 

overfitting on the training data.  Therefore, in this paper, 

automatic feature selection from a very large number of 

candidate features is investigated. 

Most papers that have investigated how to choose an 

optimal feature set for duration prediction focus either on 

manually selecting an optimal feature set [3,9], or on 

analyzing the effectiveness of individual features in a manually 

chosen feature set [7], without actually optimizing the set.  

Since these methods are not automatic, they are time-

consuming, and indeed with a very large set of candidate 

features the vast number of possible combinations makes it 

extremely difficult to manually optimize the feature set in any 

meaningful way. Furthermore, a feature set chosen for one 

corpus will not necessarily perform as well on a corpus of a 

different speaker, language or size. 

Automatic feature selection overcomes these problems.  It 

can be applied to any voice in any language, of any corpus 

size, and it chooses the feature set that best captures the 

durational characteristics of that voice.  Furthermore, because 

it is completely automatic, it can try a large number of possible 

features sets in a reasonable amount of time. 

True automatic feature selection for phone duration 

prediction was previously investigated by Ozturk and Ciloglu 

[8].  Unfortunately, the feature selection in the paper selects 

from a set of only 17 possible features, and it suffers from the 

serious methodological error of selecting the feature set to 

directly optimize performance on the test data.  There was no 

unseen data on which to test the final selected feature set, and 

thus no way to know if the selected feature set was overfitted 

to the test set. 

In fact, avoiding overfitting on the training data is 

arguably the primary challenge of automatic feature selection.  

Furthermore, selecting from a large number of features 

increases the chance that a feature will improve performance 

on a development set (a secondary test set used to evaluate 

intermediate feature sets) completely by chance, rather than 

because it truly correlates with the dependent variable. 

The goal of this paper, then, is to establish how well 

automatic feature selection from a large number of candidate 

features can perform for phone duration prediction.  

Accomplishing this requires the secondary goal of 

investigating techniques to avoid overfitting on the training 

data during selection. 

2. Method 

2.1. Data 

The data used for these experiments was a speech corpus of a 

female speaker of American English recorded by Toshiba 

Research Europe.  The corpus was 5.5 hours long.  The corpus 

was transcribed with manually corrected phonetic 

transcriptions in a proprietary 43-symbol phone set which was 

conventional except in that plosive closures were transcribed 

separately from plosive releases and clustered together for the 

purposes of duration modeling.  The total number of phones in 

the corpus was 125,543. 

The data was divided into 80% training, 10% 

development, and 10% testing.  All model training, including 

automatic feature selection, was performed using the training 

and development data only.  The test data was only used to 

determine the final accuracy of the final optimized feature sets 

identified during feature selection. 

2.2. Algorithm 

Multiple linear regression (MLR) was used as the machine 

learning algorithm for all experiments.  MLR assumes that a 

dependent variable can be modeled as a linear combination of 

independent variables (features) multiplied by appropriately 

estimated coefficients.  The general model form is 
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where y is the dependent variable, the x are the independent 

variables, the β are the estimated coefficients, p is the number 

of independent variables, and e is an error term representing 



the noise in the model.  An MLR model is trained by 

estimating values for each coefficient, either by matrix 

methods or by gradient descent. 

Symbolic (non-numeric) features are a special case in 

MLR.  Since symbolic feature values cannot be directly 

multiplied by a coefficient, MLR estimates a coefficient for 

each possible feature value of these features.  Then during 

prediction, only the coefficient that corresponds to the input 

feature value is added to the final prediction.  Internally, this is 

done by converting a feature with n possible values into n 

Boolean features, and then assigning True to the feature 

corresponding to the input feature value and False to the other 

features. 

For the current experiments, a variant of MLR in which 

true continuous features are not modeled was used [10].  

Instead, individual coefficients are estimated for each value of 

a semantically continuous variable.  This enables nonlinear 

modeling of semantically continuous variables, at the cost of 

increasing the number of parameters that must be estimated 

and thus the risk of data sparsity.  It was due to this risk that 

the automatic feature value clustering method described in 

section 2.4 was used. 

Because the duration properties of phones vary 

considerably from one phone to the next, separate regression 

models were trained for each phone, and automatic feature 

selection was performed separately for each regression model. 

Because MLR does not model interactions between 

features, such interactions cannot cause stepwise automatic 

model selection methods to get stuck in local minima.  Thus, 

for the automatic feature selection, a simple greedy forward 

selection method was chosen.  In this method, each feature 

was first evaluated individually.  Then, the features were 

sorted in descending order of accuracy and each was added in 

turn to the feature set.  If the feature improved accuracy, then 

it was kept in the feature set; otherwise, it was discarded. 

To prevent overfitting on the training data, two different 

techniques were tried.  The first was the Bayesian Information 

Criterion (BIC) [11], where a candidate feature had to improve 

the BIC of the training data in order to be selected into the 

final feature set.  The second method was n-fold cross 

validation, n=8, combined with a simple, constant minimum 

improvement threshold.  This threshold required each 

candidate feature to improve the mean accuracy on the cross-

validation test sets by at least a certain fixed amount in order 

to be selected.  The value of the threshold was determined 

empirically by choosing several possible threshold values, 

performing automatic feature selection with cross validation 

on the training set using each value, and then evaluating the 

accuracy of the resulting feature sets on the development set.  

The threshold which resulted in the highest development set 

accuracy was used as the final improvement threshold. 

2.3. Feature set 

A total of 242 features were used as the set available for 

feature selection to choose from.  (We do not claim that the set 

contains every feature that could potentially be tried; it is 

simply a very large set.)  Due to the large number of features, a 

very compact representation is necessary for describing them 

here. If a number in parentheses (n) follows the feature name, 

then the feature was actually made available as a window of n 

features centered on the unit corresponding to the current 

phone (values of n were chosen arbitrarily).  An asterisk 

following the window size means that the central feature of 

that window always had the same value for each model (e.g. 

phone label) and was not used.  Note that the information 

encoded by some features overlaps; this allows feature 

selection to choose the encoding(s) which it finds most useful. 

Feature values were calculated using part of speech (POS), 

grammatical role and distance, prosodic break and pitch accent 

values that were predicted (by conventional ML methods), 

rather than using manually corrected gold standard values (the 

ML models were trained on gold standard values).  This was 

done firstly to eliminate training/synthesis mismatch (since 

during synthesis, predicted values are input to phone duration 

prediction), and secondly because it results in a realistic 

judgement of such features’ usefulness.1 

The complete feature set was as follows, with definitions 

when necessary: 

 

• punctuation (5):  The punctuation mark after the current 

word, if any 

• part of speech (POS) (5):  The predicted POS of the 

current word 

• contentFunction (5):  Whether the current word is a 

content or function word, based on POS 

• extendedContentFunction (5): An “extended” content-

function tag, as defined by Busser et al. [12], which takes 

the value of the POS if the word is a content word, or the 

actual word otherwise, but with uncommon function 

words clustered to “other” 

• role (5): The grammatical role, such as “subject” or 

“object”, predicted for the current word 

• numWordsToHead (5): The predicted distance between 

the current word and its grammatical head 

• lowestSpanDependencyRole (5): The grammatical role of 

the lowest, i.e. shortest, dependency link that spans the 

juncture  between the current and following words, as 

defined by Hunt [13].  For example, if the lowest 

spanning role is “subject”, then the words on the left side 

of the juncture belong to the subject while the words on 

the right belong to the predicate 

• numWordsInLowestSpanSubstructure (5): The number of 

words in the dependency substructure which is headed by 

the shortest dependency link that spans the juncture 

following the current word.  Depending on the direction 

of the link, this corresponds to the size of the constituent 

to the left or the right of the juncture 

•  prosodicBreakFlag (5):  Whether or not a prosodic break 

is predicted to follow the current word 

• pauseFlag (5):  Whether or not a pause follows the 

current word 

• pitchAccent (5):  Predicted pitch accent value (accented 

or deaccented) 

• phoneLabel (9*):  The name of the current phone 

• phoneType (9*): One of “LongVowel”, “ShortVowel”, 

“Diphthong”, “VoicedPlosive”, “UnvoicedPlosive”, 

                                                                 

 
1
 It might be argued that training phone duration prediction on 

predicted values confounds the accuracy of duration prediction with 

the accuracy of predicting values in previous modules.  However, it 

was felt that the accuracy of predicting these values was fairly close to 

the state of the art (e.g., 0.75 F-score for Boolean prosodic break 

prediction; 90% accuracy for two-level pitch accent prediction), and 

that overall it was more important to select feature sets that reflected 

the true usefulness of candidate features in actual synthesis.  

Furthermore, using non-predicted values opens up the possibility of 

introducing candidate features that are useful but difficult to predict 

accurately, such as “hasContrastiveFocus”.  Automatic feature 

selection would trivially select these features, but this wouldn’t reveal 

anything about improving the quality of actual TTS systems. 



“OtherVoicedConsonant”, “OtherUnvoicedConsonant”, 

“Closure” 

• phone{IsVoiced|Place|Manner|VoicingAndManner| 

Height|Backness|Tenseness|Roundness} (9*):  Linguistic 

properties of current phone 

• sylVowelLabel (5): Label of vowel of current syllable 

• phoneIsStressed (9):  Whether the current phone is a 

lexically stressed vowel 

• sylRelativeToStress:  Whether the current syllable is 

before, after, or the same as the lexically stressed syllable 

of the current word 

• sylIsStressed (5):  Whether the current syllable has lexical 

stress 

• sylHasPitchAccent (5):  Whether the predicted pitch 

accent of the current syllable is “accented” or 

“deaccented” 

• numPhonesToSylNucleus: Number of phones between 

current phone and vowel of current syllable; negative if 

the current phone is after the vowel of the current syllable 

• numPhonesToSyl{Begin|End}: Number of phones 

between the current phone and the beginning/end of the 

current syllable 

• num{Phones|Syls}ToWord{Begin|End} 

• num{Phones|Syls|Words|Breaks|Pauses|Puncs}ToSent 

{Begin|End}:  “Break” is prosodic break; “Punc” is 

punctuation mark 

• num{Phones|Syls}To{Previous|Next}{Stress|Break| 

PitchAccent|Pause|Punc} 

• numWordsTo{Previous|Next}{ContentWord|Break| 

PitchAccent|Pause|Punc} 

• numContentWordsTo{Previous|Next}Pause 

• numBreaksTo{Previous|Next}{Pause|Punc} 

• numPausesTo{Previous|Next}Punc 

• numPhonesInThisSyl{Onset|Coda}:  The number of 

phones in the onset/coda of the current syllable 

(regardless of where in the current syllable the current 

phone is located) 

• numPhonesInThisSyl (5) 

• num{Phones|Syls}InThisWord (3) 

• num{Phones|Syls|Words}InThis{Chunk|PausePhrase| 

Sent}:  “Chunk” is one or more consecutive words 

delimited by prosodic breaks (or sentence boundaries); 

“Pause phrase” is the same but delimited by pauses 

• numChunksInThis{PausePhrase|Sent} 

• numPausesInThisSent 

2.4. Automatic feature value clustering 

One drawback of MLR is that many instances of each feature 

value must exist in the training data in order to reliably 

estimate coefficients for the feature.  If the number of 

instances is too small, then coefficients that overfit the training 

data may be estimated.  For example, if a feature value appears 

exactly once in the training data, then a coefficient can be 

estimated that simply reduces the error of that particular 

training instance to zero.  This overfitting problem might be 

exacerbated by model selection:  features containing 

infrequent features values might tend to be chosen, because 

these might reduce the training error more significantly (albeit 

only by overfitting the training data). 

To help avoid this problem, feature values were 

automatically clustered prior to training (manual clustering 

was impractical due the large number of features).  For 

discrete features, it is difficult to determine a priori which 

feature values are more closely related than others.  For this 

reason, a simple frequency-based clustering method was 

chosen:  for each feature, the least frequent value was 

iteratively clustered with the next least frequent value until all 

clustered values had at least 10 instances.  For semantically 

continuous features (recalling that the version of MLR used 

does not support true continuous features), the least frequent 

value was iteratively clustered with the value that is 

numerically the closest on the side closer to zero (that is, 

smaller than a positive value, and larger than a negative 

value), until all clustered values had at least 10 instances. 

3. Results 

Firstly, a baseline feature set was defined.  This was chosen to 

be a manually determined feature set that was extensively 

tuned on the same speech corpus as that used for the 

experiments, and consisted of the following 19 features: 

 

• numPhonesToSylNucleus 

• numPhonesToSyl{Begin|End} 

• numSylsToNext{Stress|Break} 

• numSylsTo{Previous|Next}Pause 

• numSylsToWord{Begin|End} 

• POS 

• pitchAccent 

• {previous1|next1|next2}PhoneType 

• sylRelativeToStress 

• numPhonesInThisSyl{Onset|Coda} 

• numPhonesInThisSylMaxN 

• numSylsInThisWordMaxN 

 

Duration prediction accuracy on the test set using this 

baseline feature set was 24.4 ms RMSE. 

Next, the accuracy of automatic feature selection using 

BIC was evaluated.  Because the goodness-of-fit measurement 

of BIC is calculated on the training data itself, the training and 

development data were pooled together for automatic feature 

selection.  The resulting test set accuracy was 23.3 ms RMSE. 

Finally, automatic feature selection with n-fold cross 

validation with and without the minimum improvement 

threshold was carried out.  The best threshold was found to be 

0.06 ms RMSE.  Then, the feature set selected using the best 

improvement threshold was evaluated on the test data, 

resulting in an accuracy of 22.5 ms RMSE.  Without the 

threshold, accuracy was 22.7 ms RMSE.  All results are 

summarized in Table 1, along with the mean number of 

features selected for each phone model. 

 

Model Features 

per phone 

RMSE 

accuracy 

RERR over 

baseline 

Baseline 19 24.4 ms n/a 

BIC 10 23.3 ms 4.5% 

Xval, no thresh. 40 22.7 ms 7.0% 

Xval, thresh. 16 22.5 ms 7.8% 

Table 1: Phone duration prediction accuracies 

The results show that all methods of preventing overfitting 

offer an improvement over the baseline manually selected 

feature set, with n-fold cross validation with the improvement 

threshold giving the overall best accuracy, representing a 7.8% 

relative error rate reduction (RERR) over the baseline model.  

The improvement over cross validation with no threshold, 

along with the large reduction in number of features selected 

(60%), suggests that the threshold was helpful in preventing 

overfitting on the training data. 



4. Discussion 

An analysis of the most accurate automatic feature selection 

method, n-fold cross validation with an improvement 

threshold, was performed to better understand the nature of the 

features that were selected.  Firstly, since automatic feature 

selection was performed separately for each phone model, a 

metric was designed to calculate the most frequently selected 

features across all models.  For this metric, a score of 1.0 was 

assigned to the first-selected feature for each model, and then 

linearly decreasing scores were assigned to subsequently 

chosen features such that the final feature chosen for each 

phone model was assigned a score of 1/lp, where lp is the total 

number of features selected for phone p.  For example, if four 

features were selected for one phone model, the features would 

receive scores of 1.0, 0.75, 0.5, and 0.25, in the order that the 

features were selected.  All features not selected for a model 

were assigned a score of 0.0.  Then, for each feature, a final 

weighted average score across all models was calculated, with 

the weights equal to the number of test cases for each phone, 

in order to give more importance to features selected for more 

frequent phones.  So in these final scores, a feature that was 

selected first for every phone model would receive a score of 

1.0, while a feature that was never chosen would receive a 

score of 0.0.  The 20 features with the highest scores given this 

metric are listed in Table 2. 

 

 Feature Score 

1 next1PhoneLabel 0.76 

2 previous1PhoneLabel 0.59 

3 next2PhoneLabel 0.55 

4 numPhonesToNextPause 0.47 

5 numPhonesToNextBreak 0.45 

6 numPhonesToWordBegin 0.33 

7 numPhonesToNextPitchAccent 0.30 

8 lowestSpanDependencyRole 0.23 

9 numSylsToNextBreak 0.23 

10 numPhonesToWordEnd 0.17 

11 extendedContentFunction 0.15 

12 numSylsToNextPause 0.14 

13 POS 0.14 

14 numPhonesToSylBegin 0.14 

15 sylHasPitchAccent 0.13 

16 next1PhoneIsStressed 0.13 

17 numPhonesToNextPunc 0.12 

18 previous2PhoneLabel 0.10 

19 sylVowelLabel 0.10 

20 sylRelativeToStress 0.10 

Table 2: Most frequently selected features 

The most important features in this list appear to be mainly 

of two different types.  Firstly, and most importantly, are the 

phone context features {previous|next}{1|2}PhoneLabel, 

which include the overall top three features.  Secondly in 

importance seem to be features about the distance to following 

boundaries, encoded by the six features num{Phones|syls}-

ToNext{Break|Pause} and numPhonesTo{WordEnd|Next-

Punc}.  Pairs of features differing only in unit size (phone or 

syllable) were selected twice, suggesting that counting in 

different sized units provides complementary information. 

Seven of the top 20 features contain predicted feature 

values: numPhonesToNext{Break|PitchAccent}, numSylsTo-

NextBreak, sylHasPitchAccent, lowestSpanDependencyRole, 

POS, and extendedContextFunction.  This demonstrates that 

predicted features from other modules need not be perfectly 

accurate in order to be important for improving duration 

prediction accuracy, as long as they are accurate enough. 

Feature selection frequency scores were also calculated 

separately for vowels and consonants.  The most salient 

difference was that the features POS and extended-

ContentFunction were ranked 10 and 11 for vowels, but were 

not within the top 20 features for consonants.  This suggests 

that these features were primarily being used to model the fact 

that function words are often pronounced with shorter phone 

durations than content words, and that this difference is 

reflected primarily in vowel phones. 

5. Conclusion 

The experiments reported in this paper demonstrate that 

automatic feature selection from a very large number of 

features offers a clear objective improvement in phone 

duration prediction over a manually selected baseline feature 

set.  N-fold cross validation combined with a simple 

improvement threshold is an effective way of preventing the 

automatic feature selection from overfitting the training data.  

Future research may include developing a more sophisticated 

improvement threshold, such as phone-specific thresholds or a 

threshold dependent on the number of model parameters. 
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