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Abstract
Non-modal phonation conveys both linguistic and paralinguistic
information, and is distinguished by acoustic source and filter
features. Detecting non-modal phonation in speech requires re-
liable F0 analysis, a problem for telephone-band speech, where
F0 analysis frequently fails. We demonstrate an approach to
the detection of creaky phonation in telephone speech based on
robust F0 and spectral analysis. Our F0 analysis relies on an
autocorrelation algorithm applied to the intensity-boosted and
inverse-filtered speech signal and succeeds in regions of non-
modal phonation where the non-filtered F0 analysis typically
fails. In addition to the extracted F0 values, spectral ampli-
tude is measured at the first two harmonics (H1, H2) and the
first three formants (A1, A2, A3). Visual and spectral inspec-
tion of the detected creaky phonation confirms the findings re-
ported from laboratory setting. Statistical analysis using one-
way ANOVA and classification using Support Vector Machine
(SVM) reveals promising results which lead to further improve-
ment for automatic detection of non-modal phonation in tele-
phone speech.

1. Introduction
Through modulation in source and filter characteristics, speech
conveys both linguistic and paralinguistic information. Fun-
damental frequency (F0) and harmonic structure are important
factors in encoding lexical contrast and allophonic variation re-
lated to laryngeal features [1][2][3]. They also play an impor-
tant role in the expression of prosodic features of stress and in-
tonation [4][5][6]. In addition, shifts in F0 and voice quality can
signal emotional state or affect, as for example the expression
of boredom signalled by creaky voice, or intimacy signalled by
breathy voice [7].

It has been widely noted that there is a relationship between
F0 and voice quality. For example, Maddieson and Hess [3] ob-
serve significantly higher F0 for tense vowels in languages that
distinguish three phonation types (Jingpho, Lahu and Yi) and
Ohala [2] observes that Hindi breathy voiced stops are distin-
guished by a lowered F0 at voice onset following release. How-
ever, F0 is not always a strong indicator of voice quality, as
shown by studies of English that fail to show a strong correla-
tion between any glottal parameters and F0 [8][5]. On the other
hand, information obtained from spectral structure has been
shown to be more reliable for the discrimination of non-modal
from modal phonation. For example, Gordon and Ladefoged [1]
describe the characteristics of creaky phonation as having non-
periodic glottal pulses, lower power, lower spectral slope, and
low F0. They report that spectral slope is the most important
feature for discrimination between different phonation types.
Nı́ Chasadie and Gobl [9] also characterize creaky phonation
as having extremely low F0 and irregular glottal pulses. They

state that significant spectral cues to creaky phonation are i) a
very dominant A1 (i.e., amplitude of the strongest harmonic of
the first formant) relative to H1 (i.e., amplitude of the first har-
monic), and ii) H2 (i.e., Amplitude of the second harmonic)
higher than H1.

The studies cited above establish the importance of spec-
tral structure, and in particular the relative amplitude of the
lower harmonics, for voice quality identification. Extraction of
harmonic structure, in turn, requires reliable extraction of F0.
For low fidelity recordings, such as those characteristic of tele-
phone speech, reliable F0 analysis is a major challenge. An
added problem in the analysis of spectral structure is the effect
of pitch variation; spectral measurements are sensitive to dif-
ferences in pitch that can amplify or attenuate the amplitude of
some harmonics [5]. Previous studies find that reliable voice
quality measures require high fidelity recording, ideally sup-
plemented by EGG data to support F0 analysis, and a labor-
intensive process of manual, interactive analysis (e.g., [5] [9]).
This state of affairs calls to question the viability of voice qual-
ity analysis for large speech corpora, especially corpora consist-
ing of low quality recorded speech, such as telephone speech.
We address this challenge in the present study, which presents
a method for the extraction of F0 and harmonic structure that
proves effective for telephone speech, and results from a clas-
sification experiment that demonstrate the usefulness of these
acoustic features for voice quality identification. These issues
are discussed as follows. Sections 2 introduces methods for ex-
tracting F0 and spectral features from the Switchboard corpus
of telephone conversation speech. Section 3 presents ANOVA
results that establish a relationship between F0 and spectral fea-
tures and perceived voice quality in the Switchboard corpus,
and results from classification experiments using Support Vec-
tor Machines to identify creaky and modal voice quality, based
on perceptual labels. Section 4 concludes the paper with discus-
sion of strategies for improving the differentiation of non-modal
phonation from modal phonation in telephone speech.

2. Method
2.1. Corpus

Switchboard is a corpus of spontaneous telephone conversa-
tions between strangers [11]. The corpus is designed mainly
to be used in developing robust speaker-independent Auto-
matic Speech Recognition (ASR). In general, the quality of the
recorded speech, which is sampled at 8kHz, is much inferior
to speech samples recorded in the phonetics laboratory. As
noted by Taylor [12], pitch tracking algorithms known to be
reliable for laboratory-recorded speech (e.g., [4]) often fail to
extract an F0 during regions perceived as voiced from Switch-
board corpus. Our analysis is based on the Switchboard files



in the WS97 subset for which there are hand-corrected word-
and phone-aligned transcriptions. Through the course of a tran-
scription project (not reported here), about 200 WS97 files were
identified as containing regions of non-modal, creaky phona-
tion. Phonation quality was assessed on the basis of visual in-
spection of the spectrogram and waveform, and listening. Out
of these 200 files, we selected 160 intervals of modal phona-
tion and 140 intervals of creaky phonation for acoustic feature
analysis and classification experiments.

2.2. Feature extraction: F0 and spectral cues

Extraction of F0 and spectral features is done using Praat [14]
following the algorithm diagrammed in Figure (1). First, uni-
form intensity normalization based on 85 dB is applied to each
file. Intensity normalization is necessary because the level of
intensity in Switchboard sometimes falls below the threshold
necessary for F0 analysis. Following intensity normalization,
inverse filtering is applied and F0 analysis is calculated on the
intensity-normalized, inverse-filtered signal, using the autocor-
relation method developed by [13] in a window that is dynam-
ically sized to contain at least four glottal pulses based on the
minimum F0 obtained from unfiltered AC analysis. Harmonic
structure is determined through spectral analysis using FFT
and long term average spectrum (Ltas) applied to the intensity-
normalized, inverse filtered signal. H1 and H2 are calculated
through integer multiplication of the F0 value obtained from the
autocorrelation analysis. A1 through A3 measures are obtained
on the basis of the intensity normalized signal without inverse
filtering. After postprocessing formant values using the Praat
backtracking features, spectral analysis using FFT and Ltas is
performed to obtain the formant amplitude measures A1, A2
and A3, and spectral slope. The F0 and spectral features ob-
tained from these two analyses of each windowed frame are
combined in the calculation of H1-H2, H1-A1, H1-A2, and H1-
A3, and these measures along with F0 and spectral slope are
the basis for our classification experiments. Intensity measures
are not directly evaluated for this experiment. The measures are
extracted from windowed signals at 50 ms. intervals.

The extracted F0 and spectral features are evaluated in re-
lation to the perceptually-based labels of creaky vs. modal
phonation for a total of 300 sound intervals in the 200 files
we selected from in the WS97 subset. While this study is fo-
cused on the acoustic correlates of perceived creaky voice in
our data, we recognize that other types of non-modal phona-
tion such as tenseness or pressed voice may also occur in the
corpus without explicit labeling. Figure (2) presents an exam-
ple waveform of the utterance yeah that that is identified as ex-
hibiting creaky or glottalized voice quality in the time-indexed
interval from 0.665 to 0.765 seconds. F0 and spectral features
are taken from two to three windowed samples (depending on
the length of the interval) within the interval labeled creaky and
logged into the creaky phonation database, and features from
another two to three windowed samples are taken from modal
phonation regions of the same file and logged into the database
for modal phonation. To balance the distribution of creaky and
modal phonation samples across the corpus, features from no
more than three feature windowed samples are extracted from
the same file for creaky and modal voice qualities. Figure (3)
shows that changes in F0 (top), H1-H2 (mid), and H1-A1 (bot-
tom) values occur at the juncture between the labeled creaky
and modal voice intervals in Figure (2).
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Figure 1: Diagram of feature extraction algorithm

Figure 2: Waveform of the utterance ‘yeah that’ with perceived
creaky phonation or glottalization in the time interval from
0.665 to 0.765 seconds

3. Analysis and classification
3.1. One-way ANOVA

Figure (3) shows that the regions perceived as instances of
creaky voice are associated with low F0 and relatively high
H2 compared to H1. Results from separate one-way ANOVAs
for each acoustic feature with the independent factor Phonation
Type (creaky, modal) are given in Table (1), with degree of free-
dom of 1 for between groups and 298 for within groups. These
results show that a significant effect of Phonation Type for every
feature H2. These results based on perceptual labeling of pro-
totypical creaky and modal exemplars are in line with findings
from previous acoustic studies (e.g.,[9]).

One possible reason for the absence of a Phonation Type
effect on H2 is that while the variation of H1 is large, the vari-
ation of H2 is relatively small, as illustrated in Figures 4 and
5, showing long term average spectra (Ltas) from two different
speakers for modal voice (Figure 4) and creaky voice (Figure
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Figure 3: Plots of F0 (above), H1-H2 (mid), and H1-A2 (be-
low) for the utterance ‘yeah that’ obtained from the algorithm
diagrammed in Figure (1)

Table 1: ANOVA Results

F value Sig
F0 100.846 < 0.001
H1 210.000 < 0.001
H2 0.395 < 0.53

H1−H2 206.599 < 0.001
Slope 11.611 < 0.005

H1−A1 67.887 < 0.001
H1−A2 102.798 < 0.001
H1−A3 67.284 < 0.001

5) regions of the same word table. Even though the two voice
qualities differ in H1-H2 values, H2 is relatively similar (around
25 to 30 dB) in both Figure (4) and Figure (5).

3.2. Classification using Support Vector Machine(SVM)

Classification experiments were conducted using the Support
vector machine (SVM) classification learning algorithm using
the radial basis function (RBF) availabe in libsvm [15]. Sound
files from the Switchboard subset described above were classi-
fied as either creaky or modal based on the acoustic features of
F0 and harmonic structure using the best parameters returned
by parameter search tool in [15] (i.e., C = 8.0, and γ = 0.125).
Classification of phonation type (creaky vs. modal) results in
75% accuracy. The result shows an improvement from the base-
line of 53% (160/300).

4. Discussion and conclusion
When F0 is reliably extracted, it is possible to detect creaky
phonation on the basis of harmonic structure, even on tele-
phone speech. The analysis of creaky phonation from tele-
phone speech is in line with the previous results obtained from
laboratory speech (e.g., [9]). This promising result suggests

Figure 4: H1−H2 for a modal voice sample

Figure 5: H1−H2 for a creaky voice sample

the viability of automatic detection of non-modal phonation
from unlabeled speech data. However, creaky phonation is just
one of many types of voice quality found in natural conversa-
tional speech. For example, tense phonation (also called pressed
phonation) and creaky phonation share considerable similar-
ity in spectral features. Nı́ Chasaide and Gobl[9] state that if
the pulse-to-pulse variability is ignored, the distinction between
tense and creaky phonation is difficult to make. Figure (6) and
Figure (7) present scatterplots showing the relationship between
F0 and H1-H2, and between H1 and H2, respectively. The val-
ues are taken from vocalic regions in all 200 files used for the
acoustic and classification experiments discussed above. Fig-
ure (6) demonstrates a nonlinear relationship between F0 and
H1-H2, which confirms earlier studies [8][5][7] in finding that
F0 alone is not a good predictor of voice quality. Figure (7) re-
veals two clouds in the distribution of H1 and H2, and although
the data in this analysis have not yet been (but soon will be)
coded for phonation type, the distribution may be indicative of
a split between modal and non-modal phonation. Based on de-
scriptions by Nı́ Chasaide and Gobl [9], we speculate that the
cloud for nonmodal phonation may in fact comprise two types
of non-modal phonation: creaky and tense phonation.

The features used in this paper are primarily those extracted
from the frequency domain. We are currently improving our
algorithm for detecting creaky phonation by incorporating fea-
tures taken from the time domain in order to discriminate creaky
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phonation from tense phonation. We are also experimenting
with clustering algorithms, using the features extracted in fig-
ure (7). Results demonstrated in this paper suggest that we can
use the features described here to automatically learn, in an un-
supervised or lightly-supervised fashion, clusters corresponding
respectively to modal and creaky phonation, and that the class
boundaries learned in this way may be used for voice quality
analysis in automatic speech recognition. Our goal is to develop
tools for the automatic detection of acoustic features that signal
prosodic events (accent and phrasal juncture) and regions of dis-
fluency. Voice quality, and in particular glottalization, is known
to play an important role in signalling these events. Thus, de-
tection of non-modal phonation provides a basis for recognition
of prosody and disfluency.
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