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Abstract

We explore a simple model of speech articulation. The model
consists of an articulator combined with the ability to remem-
ber and improve the neural drive signal for the articulator.
Over many productions, the system learns a neural drive sig-
nal that provides an accurate match for acoustically-defined tar-
gets. In fact, the match can be better than expected, yielding
narrower regions of coarticulation than the intrinsic muscle re-
sponse time. Further, despite the time delay introduced by the
muscle, the articulatory response has no time delay, because the
learned neural drive signal occurs in advance of changes in the
acoustic targets. Finally, we test the model against tonal pro-
duction data from Mandarin conversation, and show that it can
represent non-trivial surface intonation patterns with simple and
linguistically reasonable targets.

1. Introduction

In this paper, we will investigate a simple model of articu-
lation that we call theM inimal Articulatory LearningModel
(MALM). It is designed to be a simple schematic representation
and yet capture some of the essential details of the physiology
and language learning process.

The model simulates the learning process of improving mo-
tor skills through practice and evaluation. It applies to com-
monly repeated speech fragments where the speaker has the
opportunity to try different productions and observe the effect.
Presumably, speakers make an effort to improve their articula-
tion from production to production to ensure that their listeners
can understand and to meet social norms.

The model consists of a controller (“brain”), an articulator
and some acoustic targets. The controller follows a Markov-
Chain Monte-Carlo algorithm [9, 4]: it takes the stored pattern
of neural impulses, and produces a randomly modified version.
If the modified version gives a production that is a better match
to the targets than the stored pattern, the modified version is
accepted and stored. It will then be the basis of future mod-
ifications. Otherwise, the modified pattern is discarded and a
differently modified pattern will be tested in the next iteration.

The articulator is a critically-damped impulse response,
which can optionally have an exponential relationship between
muscle length and the resultingf0 [2]. We investigate the be-
havior of the model, and compare it with examples of tonal pro-
duction data from Mandarin conversation.

2. Model Details

At each iteration, the model is defined in terms ofnt, which is
the rate of nerve firing as a function of time. We sample this
(and other signals) at 10 ms intervals. This signal then excites

the articulatory muscle, which has a critically damped response:

G(∆t) =

(
∆t
τ
· e−∆t/τ if t > 0

0 otherwise.
(1)

We chooseτ = 100 ms for these examples, to approximately
match the rate at which people can adjust their pitch [11]. The
results presented here are neither critically dependent on the ex-
act choice of the articulatory response norτ .

We take the producedf0 to be equal to a nonlinear function
H of the the convolution ofnt andG(∆t):

ft = H

 X
i

niG(t− i)

!
. (2)

This corresponds to a simple linear superposition of the force
from each nerve impulse, andH provides a convenient encap-
sulation of the anatomy and aerodynamics of speech.

It can be argued that the correct relationship between mus-
cle response andf0 (i.e. H) is nonlinear. [2] has proposed an
exponential relationship between muscle length andf0, while
one might alternatively expect anf0 to be proportional to the
square root of the tension in the laryngeal fold to the extent a vi-
brating string model is appropriate. For Figure 1, we chooseH
to be a Fujisaki exponential, but for simplicity in the remaining
figures we takeH(y) = y. We find little qualitative difference
in the results for any reasonable choice ofH.

The model gradually learns the optimalnt via a simple it-
erative algorithm.1 It randomly changesnt, computesft via
Equation 2, measures of the error betweenft and the acoustic
targets, then accepts the change if the error has decreased. Oth-
erwise, it rejects the change and repeats. Each iteration of this
process corresponds to producing an utterance then deciding if
it sounded right, was understood, or was socially approved.

Specifically, it computes a measure of the difference be-
tween the acoustic output and the desired target. Most simply,
this can be

Ra =
X

t

(ft − yt)
2 · S2

t , (3)

which measures how far the produced frequency is from the
target frequency. It can alternatively be

Rs =
X

t

(ḟt − ẏt)
2 · s2

t , (4)

where the dots show differentiation vs. time; this measures how
much the produced slope differs from the intended slope. We
make a combination error measure

R = Ra + Rs, (5)

1Note that there is a differentnt for each combination of tones. The
model implies that people store perhaps thousands of neural drive pat-
terns, each learned separately.



which can act likeRa, Rs, or anywhere in between depending
upons andS. The two sets of coefficients,st andSt control
which aspects of the target are important: IfSt is small, then
the absolute frequency is unimportant near timet, and if st is
small, then the slope offt is unimportant near timet. If both s
andS are small, then the target will have little influence on the
resulting computedf0.

Then we generate a randomly modified neural drive signal,
ñt from nt, computef̃t andft from them, theñR andR, which
are the errors between the desired target and thef0 pattern pro-
duced byñt andnt, respectively. IfR̃ < R + X, we accept
the change and assignnt ← ñt, whereX is a random variable
chosen from a exponential distribution with a mean of one.

The algorithm accepts all steps that decreaseR, but also ac-
cepts some steps that make small increases inR. The algorithm
never terminates; it rolls down-hill to a solution fornt that gives
close to the minimum possibleR. Then, if there are many con-
trol signals that give nearly optimal values ofR (which there
normally are), the algorithm will randomly walk from one near-
optimal instance of the control signal to another.

The random modification is generated by adding a random
variable chosen from a zero-mean Gaussian probability distri-
bution to each component ofnt. The variance of this Gaus-
sian is increased by 10% whenever a change is accepted, and
decreased by 2.5% whenever a change is rejected. This adjust-
ment ofσ adjusts the step size so that approximately 25% of all
steps are accepted.

If we take our model to represent the muscles in the vocal
folds themselves, then they cannot push, so no nerve impulses
yield a relaxed muscle, loose vocal folds, and a correspondingly
low oscillatory frequency. The rate of nerve impulses cannot
go below zero, so we constrain the possible values ofnt to be
positive. If the random step would causent < 0 for somet = t̃,
we replacent̃ ← −nt̃.

Similarly, there is a maximum possible firing rateL, and
if nt > L for somet = t̃, we replacent̃ ← 2L − nt̃. The
existence of minimum and maximum allowable values fornt

is crucial. It can be shown that if there are no limits, then the
overall system can learn to perfectly reproduce any targets with
no error; coarticulation would then be nonexistent.

2.1. Articulatory Targets

In the models we use, an “articulatory target” is the articulatory
invariant of a phonological feature. It is a theoretical construct
and may not be precisely realized, especially if there are other
nearby and/or conflicting targets. A target can be a combination
of a articulator position and velocity, that manages to commu-
nicate the phonological feature to the listener.

An analogy can be made to throwing darts. For a dart to
reach its target, the hand and arm must move through certain
positions at the right speeds. Trade-offs may occur between po-
sition and speed or between the motions of one joint (analogous
to articulator) and another. So, the articulatory invariant of a
throw that hits the target is not defined by a single position, but
is instead a range of positions, with a specific velocity for each
position.

3. Behavior of the Model
Figure 1 shows what the model is capable of learning. We set
the targetf0 target to be four Mandarin rising tones, represented
in the figure as the saw-tooth pattern of black dots. In this exam-
ple, the targets constrain thef0 values but not the slopes:s = 0

Figure 1: Planning in the form of anticipatory coarticulation
compensates for limitations of muscle response. The vertical
axis isf0, and the horizontal axis is time in centiseconds. The
acoustic target is shown as the sloping lines of dark black dots,
the predicted model output as the black curve, andnt as the
vertical blue (gray) bar chart in the background.

andS > 0. We set the maximum nerve impulse rateL = 800,
about four times the average ofnt, and we use a moderately
nonlinearH(x) = 190 · e(y−190)/100. The pattern of nerve im-
pulses is then optimized to minimize the difference between the
resultingf0 and a desiredf0 pattern.

After 5000 steps of the learning algorithm, the MALM
model output matches the targetf0 with a mean-squared fre-
quency error of 8.6 Hz. In two respects,the performance is bet-
ter than what might be expected given the muscle response:

• The response time of the overall system is about 30 ms
in this example. This is faster than the 100 ms response
time of the muscle.

• The overall system response is coincident with steps in
the target, not delayed by the muscle’s response time of
about 100 ms.

The system achieve this result by anticipating the move-
ment through iterative learning. It compensates for the smooth-
ing effect of the muscle’s response by making the neural drive
spiky (see the blue (gray) bars in Figure 1); it compensates for
the mechanical delay by shifting the neural commands early.
(For instance, near the step att = 60 centiseconds,nt goes to
zero before the target steps down and becomes nonzero again as
soon as the new target begins.)2 This leads to coarticulation that
is approximately symmetric, in that the anticipatory and carry-
over smoothing on opposite sides of a step in the target have the
same magnitude and duration. The anticipatory move leads to
the smallest mean-squared error given the muscle speed.

In speech production, coarticulation is sensitive to articula-
tory strength. It has been reported that stress affects both the
magnitude and range of coarticulation. Many papers show that
a stressed vowel is less affected by coarticulation effect then
unstressed vowel [8, 10, 3]. Schwa, the unstressed vowel in En-
glish, shows strong coarticulation effect with neighboring vow-
els [5, 1]. We model the effect of stress on coarticulation by

2This behavior is much different from models where a dynamical
system is driven by a signal that is proportional to the error. In such
systems, the signal analogous tont would follow after the change in
target and the mechanical response (analogous toft) would follow even
later, after thent-analog.



changing the weights on articulatory targets (i.e.s andS), fol-
lowing [6, 7].

4. Examples
We test the simulation model using Mandarin conversational
data with words carrying four consecutive falling tones, or
tone 4. Tone 4 starts high and falls throughout the syllable.
In the simple concatenation model that is the basis for defin-
ing coarticulation, a sequence of 4-4-4-4 then gives a saw-tooth
pitch pattern. At the end of each syllable, the pitch needs to
jump up to the beginning point of the next.

Examples of 4-4-4-4 tone patterns were extracted from a
corpus of two hours of conversational speech evenly divided
among four speakers. Two of the speakers did not produce any
4-4-4-4 patterns. The other two speakers produced two each. In
the following, pei4-dian4 she4-ji4electronic designand shi4-
jie4 ri4-bao4World Journalwere from one speaker and the two
instances of lu4-lu4-xu4-xu4continuouslywere from another
speaker. These four natural productions show different degrees
of coarticulation effects, from a mild case in Figures 2, to a se-
vere case in Figure 5, and intermediate stages in the other two
productions. Thef0 data are plotted by circles on the y-axis as a
function of time in centiseconds. Solid vertical lines mark sylla-
ble boundaries and dashed lines marked the boundaries between
the initial consonant and the vowel.

The models are shown after 1000 iterations; there are no
systematic changes beyond that point. We model the observed
pitch movement in these four cases with the same pitch target
on every syllable; it decreases from 220 Hz to 160 Hz over the
duration of the syllable. Likewise, we always choses > S
so that the target constrains the slope off0 more strongly than
it constrainsf0 to any particular value. (Figures 2, 4, 5 have
s/S = 90 and Figure 3 hass/S = 23.) These uniformities can
be interpreted as the articulatory target or invariant of tone 4.

The strengths (s and S) on the tone target for each syl-
lable are adjusted together to match the data. The strength
values of the four syllables in each case are: Figure 2:s =
0.9, 0.9, 0.45, 0.9; Figure 3:s = 0.9, 0.45, 0.45, 0.9; Figure 4:
s = 0.9, 0, 0, 1.8; Figure 5: s = 0.09, 0.09, 0.9, 0.27. In the
models, multiple lines represent the results of different runs.3

Linguistically, one can justify different values ofs for different
syllables on several bases: words can be semantically more or
less important, they can be in a stressed position in a word, or
the word can be under focus.

The strength values reflect segmental information as well.
For example, in Figure 5, the third syllable has a strong weight
and the other syllables are weak in the model representation.
This weight assignment is consistent with the weakening effect
that is found in the segmental channel of the spoken data, where
consonant lenition occurs on the second and the fourth syllables.

Much of the behaviour of the model is driven by the size
of the inter-vowel gaps (unvoiced regions). A small gap pretty
much forces thef0 on one syllable to be continuous with the
next, while a large gap breaks that constraint and lets theS part
of the target (Ra) take over.

5. Conclusion
In this paper, we present a simulation modelMALM which
learns patterns of neuron firing to drive the muscle to produce

3Note that this is intrinsically a probabilistic model, and it has in-
trinsic variability. The solution chosen is ultimately the result of the
sequence of random steps chosen in the learning process.
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Figure 2: Sequence of falling tones (4-4-4-4) produced with
very little coarticulation, and a MALM model that produces a
similar result.
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Figure 3: Sequence of falling tones produced with mild coartic-
ulation, and a similar MALM model.
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Figure 4: Sequence of falling tones produced with some coar-
ticulation and a similar MALM model.
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Figure 5: Sequence of falling tones produced with strong coar-
ticulation and a related MALM model.

intended tone patterns. The model improves its motor skills
through practice and evaluation. Eventually, it learns to com-
pensate for the mechanical delay of the muscle response by
shifting the neural commands early. This leads to coarticula-
tion that is approximately symmetric. The anticipatory neural
drive leads to the smallest error given the muscle speed.

We show a variety of surface intonation patterns from con-
versational Mandarin that were all generated from the same un-
derlying 4-4-4-4 phonological sequence. The MALM model is
able to plausibly reproduce the surface intonation patterns us-
ing linguistically plausible targets. We suggest that differences
in surface intonation pattern from syllable to syllable occur be-
cause some syllables provide tighter constraints on the local in-
tonation than others. This, combined with interactions of syl-
lables with their neighbors can explain many different surface
patterns.
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