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Abstract 
This paper presents a new framework for improved large 
vocabulary Mandarin speech recognition using prosodic 
features. The prosodic information is formulated in a 
probabilistic model well compatible to the conventional 
maximum a posteriori (MAP) framework for large vocabulary 
speech recognition. A set of prosodic features considering the 
special characteristics of Mandarin Chinese is developed, and 
both syllable-level and prosodic-word-level prosodic models 
are trained with the decision tree algorithm. A two-pass 
recognition process is used, in which each word arc in the 
word graph output by the first pass is rescored in the second 
pass using the two prosodic models. The experiments show the 
reasonable improvements in recognition accuracy. This 
approach does NOT require a prosodic labeled training corpus, 
and works for the large-scale speaker-independent task. 

1. Introduction 
Substantial efforts have been made in analyzing the prosody 
in natural human speech[1][2]. The issue of incorporating the 
prosodic information into speech recognition processes has 
emerged in recent years. Such information as phone 
durations[3], phrase boundaries[4][5] and accentual types[4] 
were shown to offer relatively limited but actually significant 
improvements in English word recognition accuracy. Some 
recent work on Italian language[6] focused on more restricted 
tasks rather than the general purpose task, and more obvious 
improvements were found. For Mandarin Chinese, RNN-
based prosodic modeling approaches were proposed to detect 
word-boundary cues to be used in the decoding process[7], 
and some improvements in character accuracy were also 
obtained. However, the experiment for this approach was 
performed only for a speaker-dependent recognition task with 
a single-speaker corpus, therefore the problem of wide variety 
of prosodic behavior for different speakers in more realistic 
tasks was not considered yet. In addition, very often the 
various approaches of incorporating prosodic information in 
speech recognition require a training corpus with prosodic 
labels marked by human experts, whose cost is high if not 
prohibitive. In this paper, we propose a new approach to 
incorporate prosodic information in large vocabulary 
Mandarin speech recognition, which not only works for the 
large-scale speaker-independent task, but requires only a 
training corpus which does not include any additional 
prosodic labeling. 

Tseng et al[1] constructed a hierarchical multi-layer 
prosody model for fluent Mandarin speech, in which each 
hierarchical layer considers different level of perceived 
prosodic entity. In this model, the layered nodes from the 
bottom up are the syllables, prosodic words, prosodic phrases 

or utterances, breath group and prosodic phrase groups. In the 
approach proposed in this paper, only the syllable-level and 
prosodic-word-level features are analyzed and incorporated 
into the speech recognition process.  

In the following, section 2 presents the proposed approach 
of using prosodic features in the recognition process. Section 
3 describes the experiments and the results. The conclusion is 
made in section 4. 

2. Proposed Approach 

2.1. Recognition with prosodic modeling 

The conventional formula for speech recognition based on the 
maximum a posterior (MAP) principle is 

( ) ( ) ( )*= arg max | arg max |
W W

W P W X P W P X W= , (1) 

where the word sequence W={w1, w2, …, wn} is composed of n 
lexical words, and wj is the j-th lexical word. For a given 
sequence of acoustic feature vectors X, equation (1) indicates 
that the recognized result is the word sequence W* that 
maximizes the posterior probability P(W|X), which can be 
decomposed into two parts: P(W) contributed by the language 
model and P(X|W) by the acoustic models. 

Now assume we are also given a sequence of prosodic 
feature vectors F={f1, f2, …, fn}, where fj is the feature vector 
for the lexical word wj, equation (1) can then be modified to  

( ) ( ) ( )*= arg max | , arg max , | .
W W

W P W X F P W P X F W=  (2) 

Here both X and F are observable while in equation (1) only X 
is observable. Now equation (2) can be rewritten as 

( ) ( ) ( )* arg max | | ,
W

W P W P X W P F W≅  (3) 

which is based on the assumption that the acoustic and 
prosodic feature sequences X and F are independent given the 
word sequence W. Here the first two terms are obtained from 
the same acoustic and language models as in equation (1), 
while the last term P(F|W) is the probability obtained with the 
new prosodic model proposed here. If we assume that each of 
the prosodic feature vector fj behaves independently given the 
word sequence, and in addition that only the current lexical 
word wj have influence on its corresponding prosodic feature 
vector fj., equation (3) becomes 

( ) ( ) ( )*
j j

j 1

arg max | | .
N

W
W P W P X W P f w

=

≅ ∏  (4) 

Here the assumptions are apparently not exactly correct, but 
can simplify the problem here in the initial studies. They can 
be modified to include more general conditions to be used in 
equation (4) in the future. 



 

The above formulation with equations (2)-(4) can be used 
in either a one-pass decoding process or the rescoring stage in 
a multi-pass decoding process.  The latter case is used here in 
this paper, in which we incorporate the prosodic information 
in the rescoring stage of a two-pass recognition process. The 
block diagram of the complete recognition process is depicted 
in Figure 1. For each input speech utterance, the first pass 
produces a word graph of a suitable size using a baseline 
recognition system with the conventional acoustic and 
language models producing P(X|W) and P(W). The second 
pass then rescores every word arc with lexical word 
hypothesis wj in the graph by incorporating the prosodic 
model score P(fj |wj) and P(F|W) as specified in equations 
(3)(4), where the detailed evaluation of P(fj |wj) will be given 
below. In Figure 1, every lexical word hypothesis wj is 
composed of a few syllables represented by square blocks, 
and the prosodic model producing the probabilities P(fj |wj) 
and P(F|W) includes a set of decision trees, as will be clear 
below. The rescoring formula is then 

( ) ( ) ( )( ) | | ,l pS W P X W P W P F Wλ λ= + +                (5) 

where W is the word sequence hypothesis in the word graph 
being considered, λl, λp are the weighting coefficients for the 
language and prosodic model likelihoods with respect to the 
acoustic model likelihood, and S(W) is the final score.  

2.2. Prosodic modeling 

The approach summarized above can be equally applied to all 
different languages, but the part below to formulating the 
probability P(fj |wj)  to be used in equation (4) is specifically 
for Mandarin Chinese. Chinese language is monosyllable-
based. Every character has its own meaning and is 
pronounced as a monosyllable. A lexical word is then 
composed of one to several characters or syllables. However, 
it is well known that the lexical word cannot be considered as 
the basic unit in the prosodic structure in Mandarin speech. 
Instead, natural utterances automatically arrange the 
applicable combination of characters into “prosodic words”, 
which is then the real basic prosodic unit in Mandarin speech 
production and perception. Such “prosodic words” are very 
often different from the lexical words. These “prosodic 
words” apparently carry plenty of prosodic information 
helpful to speech recognition. Furthermore, Chinese is a tone 
language. Each syllable is assigned a tone. There are a total of 
five different tones in Mandarin Chinese, including four 
lexical tones plus one neutral tone. Considering the above 
special characteristics of Mandarin speech, we develop the 
prosodic model from two levels, the syllable level and the 
prosodic word level, as in the following, in order to evaluate 
the probability P(fj |wj) to be used in equation (4). 

2.2.1. Syllable-level modeling 

The probability P(fj |wj) to be used in equation (4) can be 
evaluated from the syllable level as follows. 

( ) ( )
j

j j jk jk jk
1
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L

k

P f w P f
=

=∏  (6) 

where Lj is the length of the word wj, or the number of 
characters (or syllables) in wj, fjk is the vector constructed by 
the prosodic features extracted for the boundary right after the 
k-th syllable of the lexical word wj, Tjk is the tone of the k-th 
syllable of the lexical word wj, and Bjk is a variable indicating 
the end of the word, i.e., Bjk=1 if k= Lj and Bjk=0 otherwise. 
The definitions for all these symbols are clearly shown in an 

example word sequence in Figure 2. We have fj={fjk, k=1,2,…, 
Lj}. Now the probability P(fj |wj) can be evaluated from the 
feature vectors for all the syllable boundaries of the lexical 
word hypothesis wj as in equation (6). 

By Bayesian theorem, we can have 

( ) ( ) ( )
( )

| , ,
| ,

,
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P T B
= .     (7)  

For a given lexical word hypothesis in the word graph, the 
component syllables are all given and thus the corresponding 
tone and boundary are already determined. It is therefore 
reasonable to set P(Tjk,Bjk) to be unity without loss of 
generality. On the other hand, although fjk is given for each 
syllable boundary, Bjk may be different for different lexical 
word hypothesis across the same syllable boundary.  But here 
we set P(fjk,Bjk) to be a constant for lack of knowledge,  
because the approach to evaluate this probability is unknown 
at the moment. With the above, the probability P(fjk|Tjk,Bjk) in 
equation (6) will be estimated using the probability 
P(Tjk|fjk,Bjk) in equation (7), which can be obtained by 
decision trees as explained in section 2.4. 

2.2.2.  Prosodic-word-level modeling 

There are in general three types of relations between the 
lexical words and the prosodic words in Chinese: (1) a 
prosodic word is a lexical word, (2) a prosodic word is a 
combination of several short lexical words, and (3) a prosodic 
word is a part of a long lexical word.  Case (3) is very unusual, 
so we focus on the first two cases, in which we assume a 
prosodic word boundary never exists within a lexical word. In 
this case P(fj|wj) in equation (4) can be evaluated on the 
prosodic word level by 
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where Bjk is the same as defined previously. Here in the upper 
formula we assume all syllable boundaries which are not 
lexical word boundaries (k≤Lj-1 for Lj≥2 as in equation (8)) are 
not prosodic word boundaries either. The mono-syllabic 
lexical word (Lj=1 in the lower formula in equation (8)), on the 
other hand, is usually connected to the preceding or following 
lexical word to form a prosodic word. The situation for this 
case is different to model at the moment, so we only set a 
given constant here. By Bayesian theorem, 

Figure 1: The complete recognition process and 
rescoring, where each hypothesis lexical word arc is 
composed of a dew syllables represented by square 
blocks, and the prosodic model includes a set of decision 
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same as equation (7), P(Bjk) is set to unity for a given lexical 
word hypothesis wj in the word graph, and P(fjk) is to be a 
constant value for lack of knowledge although it should be 
different for different lexical word hypothesis wj across the 
same syllable boundary. So the probability P(fjk|Bjk) in 
equation (8) will be estimated using the probability P(Bjk|fjk) in 
equation (9), which can be obtained by decision trees as 
explained in section 2.4.. 

2.2.3. Integrated prosodic modeling 

In order to use both levels of information as obtained above, 
weighted sum of the two probabilities P1(fj|wj) and P2(fj|wj) 
obtained from equation (6) and (8) respectively is used: 
( ) ( ) ( ) ( )j j 1 j j 2 j j| = | + 1- |P f w P f w P f wα α ,               (10) 

where α ranges from 0 to 1. 

2.3. Feature Parameters 

As mentioned above, a set of features are extracted for each 
syllable boundary. These features can be divided into two 
types, the prosodic features and the categorical features. The 
categorical features were not mentioned above, but they are 
helpful and can be easily inserted into the feature vectors fjk 
and fj, as will be explained below. 

2.3.1. Prosodic features 

Prosodic features are derived from pitch, duration and energy. 
Pitch has been proved very useful in the recognition of the 
tone for Mandarin Chinese, and here we use it to derive as 
many different pitch-related features as possible. For each 
syllable boundary detected, various pitch-related features 
were calculated using the pitch contour within the two 
syllables right before and right after the boundary. The 
example features used include the average value of the pitch 
within the syllable, the average of the absolute value of the 
pitch slope within the syllable, the range of the pitch within 
the syllable, the pitch reset across the boundary, and so on. In 
order to represent the shape of the pitch contour within a 
syllable, we also used the first four coefficients of the 
Legendre discrete polynomial expansion of the contour[8], for 
which the zero-th order coefficient represents the level of the 
contour, and the other three coefficients represent the key 

characteristics of the contour shape. A total of 16 pitch-related 
attributes were used here for each syllable boundary.  

Duration features such as pause and phone durations have 
been used to describe the phenomena of the prosodic 
continuity and the pre-boundary lengthening[9]. The 
durations of the two syllables before the boundary being 
considered and the ratio of them are example features used 
here. Energy also has similar effects on the prosodic 
structure[1]. The average and peak energy of the syllable 
before and after the boundary as well as the ratio of them are 
example features used here. Finally, a total of 8 duration- and 
energy-related features were used. 

2.3.2. Categorical features 

A Mandarin syllable is conventionally decomposed into two 
parts: the Initial and the Final. Here Initial is the initial 
consonant part of the syllable, while the Final includes the 
vowel part plus the optional medial and ending. Since the 
types of both the Initial and the Final for a syllable apparently 
influences the pitch, duration, and energy features, we created 
59 binary attributes corresponding to each of the 37 Final and 
22 Initial types respectively. Only the two attributes for the 
Initial/Final of the syllable right before the boundary being 
considered were set to one, and all the others to zero. These 
attributes provide the information regarding which 
Initial/Final the prosodic features obtained above belong to.  

Prosodic features apparently behave depending on the 
tones of the syllables being considered. Therefore, we created 
another total of 10 binary attributes, each corresponding to the 
five tones of the two syllables on both sides of the syllable 
being considered. Only two attributes for the tones of the two 
syllables mentioned above were set to one and the others to 
zero. 

2.4. Prosodic model training with decision trees 

The decision tree algorithm was used for the prosodic model 
to estimate the probabilities P(Tjk|fjk,Bjk) in the syllable-level 
model (equation (7)) and P(Bjk|fjk) in prosodic-word-level 
model (equation (9)). In the case of syllable-level model, we 
divided the training prosodic feature vectors into two cases: 
Bjk=1 or 0, or lexical word end or not. We then trained two 
decision tree models for each case respectively, one to 
estimate the probability P(Tjk|fjk,Bjk=0) and the other 
P(Tjk|fjk,Bjk=1). For the prosodic-word-level model, only one 
decision tree model is needed to estimate the probability 
P(Bjk|fjk). 

The RandomForest package in the software R[10] was 
selected in the implementation of the decision trees. In the 
training phase, many decision trees were trained for each case, 
in which m out of M variables were randomly selected at each 
node, where M is the total number of variables in the feature 
vectors, and m<<M. The best split based on these m variables 
is then used to split the node. In the testing phase, for each 
input feature vector, each tree gives a classification, and the 
final classification is based on the “votes” of the trees. The 
probability for each class is then obtained by the percentage 
of the votes for that class.                                                                                      

To prepare the training data for the prosodic-word-level 
model, we first deleted the feature vectors for the boundaries 
on both sides of the mono-syllabic lexical words, because as 
mentioned previously such words are always connected with 
the neighboring lexical words to form a prosodic word, and 
such situation is different to model at the moment. We then 

Figure 2 : The definition of the symbols wj, Lj, Tjk, Bjk, 
fjk, used in equation (4) and (6) for an example word 
sequence hypothesis W={w1, w2, w3, w4, w5}. Here 
every square block represents a syllable.  For example, 
w1 has two syllables, and so on. 



 

train the model of decision trees using the rest of boundaries 
based on Bjk=0 or 1.  

3. Experimental Results 

3.1. Corpus and experimental setup 

The corpus used in this research was taken from the Chinese 
Broadcast News Corpus (CBN), which was recorded from a 
few radio stations in Taipei in 2001.  The corpus used here 
include a total of 9806 utterances (10 hours) produced by nine 
female and five male speakers, all with the correct text 
transcription.  8731 utterances out of them were used for 
training, while the rest 1075 utterances for testing. All the 
speakers distribute equally on both the training and testing 
sets. The recognition experiments were performed with a 
lexicon of 100K entries, a trigram language model, and an 
intra-syllable right context dependent Initial/Final acoustic 
model set. 

3.2. Importance of the features 

We first examine the importance of each individual prosodic 
feature used here.  In the RandomForest-type decision tree, 
the split of a node is made when the gini impurity metric 
(similar to the entropy) for the two child nodes is less than 
that of the parent node. Therefore, adding up the reduction in 
the gini impurity for the features over all trees gives a fast 
estimate of the importance of the features.  Table 1 lists the 
top six important features for the syllable and prosodic-word 
level models respectively.  We found the important features 
are significantly different in the two models. For the syllable-
level model, all important features are pitch-related, 
apparently because the target label to be classified here is the 
tone, i.e., P(Tjk|fjk,Bjk) in equation (7) is used in the 
classification. 

For the prosodic-word-level model, the energy-related 
features, especially the energy reset (rank 1 in Table 1), has 
the largest discriminative power for the prosodic word 
boundaries. This is consistent with the phenomenon that 
energy has the largest value in the beginning of any kind of 

prosodic unit and then attenuates gradually [1].  The pitch at 
the beginning frame (rank 2) and the pitch reset (rank 6) both 
have significant discriminative power, which implies that 
there is usually some prosodic continuity within the prosodic 
word or discontinuity between the prosodic words. Also, the 
third Legendre coefficient (rank 4) indicates that the pitch 
shape characteristics are related to the prosodic word 
identification as well. 

3.3. Final recognition results 

Table 2 lists the final recognition results after rescoring.  The 
best result of character accuracy achievable here is 81.84% 
for λp=9.0 as compared to the baseline of 80.78%, which 
represents an error rate reduction of 5.5%. Notice that the 
upper bound character accuracy or the inclusion percentage 
for the word graph is 88.66%, which indicates that there is 
still plenty of space for further improvements. Also note that 
here a single model was used for all different speakers. Much 
better improvements may be possible if a different model for 
each speaker can be trained. 

4. Conclusions 
In this paper we propose a new approach for improving 
Mandarin speech recognition by incorporating the prosodic 
information. A new set of prosodic features were developed 
considering the special characteristics of the Chinese 
language, and two levels of prosodic model were trained 
using decision trees to generate the prosodic likelihood score 
to be used in the rescoring stage of the recognition process.  
The experiments performed on broadcast news corpus with 
many speakers verified the benefit of incorporating the 
prosody information in the recognizer, and the results are 
analyzed and discussed. 
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Table 1: The top six important prosodic features for the 
two prosodic models 

rank Syllable-level model Prosodic-word-level model 
1 the average pitch slope the reset of the average 

energy across the boundary 
2 the pitch slope at the 

beginning 3 frames of the 
syllable after the boundary 

the pitch at the beginning 
frame of the syllable after the 
boundary 

3 the third Legendre 
coefficient 

the average energy over the 
syllable after the boundary 

4 the pitch at the beginning 
frame of the syllable after 
the boundary 

the third Legendre 
coefficient 

5 the second Legendre 
coefficient 

the average energy over the 
syllable before the boundary 

6 the duration of the syllable 
before the boundary 

the reset of the pitch across 
the boundary 

Table 2: Rescoring results: character accuracy(%) 

Rescoring with baseline 
λp =7.0 λp =8.0 λp =9.0 λp =10.0 

80.78 81.72 81.75 81.84 81.79 


