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ABSTRACT 
 
In this paper, three different levels of speaker cues including 

the glottal, prosodic and spectral information are integrated 
together to build a robust speaker verification system. The major 
purpose is to resist the distortion of channels and handsets. 
Especially, the dynamic behavior of normalized amplitude 
quotient (NAQ) and prosodic feature contours are modeled using 
Gaussian of mixture models (GMMs) and two latent prosody 
analyses (LPAs)-based approaches, respectively. The proposed 
methods are evaluated on the standard one speaker detection task 
of the 2001 NIST Speaker Recognition Evaluation Corpus where 
only one 2-minute training and 30-second trial speech (in average) 
are available. Experimental results have shown that the proposed 
approach could improve the equal error rates (EERs) of maximum 
a priori-adapted (MAP)-GMMs and GMMs+T-norm approaches 
from 12.4% and 9.5% to 10.3% and 8.3% and finally to 7.8%, 
respectively.  

 
1. INTRODUCTION 

 
The most important issue for speaker verification is the 

channel/handset mismatch problem. To address this problem, 
higher level information including prosodic cues [1, 2] and mode 
of glottal phonation (or voice-quality) [3] of a speaker, which may 
be less sensitive to channel/handset mismatch are attractive 
recently.  

The prosodic information, such as the dynamic of 
pitch/energy contour, lengthening and pause duration, are already 
known to be informative and complemented with the spectral 
features-based speaker recognition approaches [1, 2]. On the other 
hand, there are only few papers working on applying the voice-
quality, especially the normalized amplitude quotient (NAQ) [4], 
to speaker recognition task so far. However, NAQ has been 
proposed as the 4th prosodic dimension of expressive speech [3]. 
And the procedure of estimating NAQ, especially, the inverse 
filtering processing to remove vocal tract influences, may be 
capable to eliminate any non-glottal-specific distortion. It is 
therefore very interesting to see if NAQ could add robustness to 
conventional spectral feature-based speaker verification systems 
or not. 

The dynamic behavior of voice quality may be affected by 
many different latent factors, such as the speaker himself, his 
corresponding audiences [3] or even his emotion and intension. 
However, in this first-try study, the dynamic characteristics of 
NAQ of speakers, i.e., the per-frame NAQ and  its first order 
derivative, are combined with pitch and energy features and 
modeled using a Gaussian of mixture model (GMM) [5] approach. 

Moreover, the latent prosody analysis (LPA) approach 
previous proposed in [2] is modified to explore the long-span 
correlation of successive prosody states (status). The basic idea is 
to automatically label enrollment utterances of speakers into 
sequences of prosody keywords (states) and to use chunks of 
prosody keywords to establish bi-gram speaker models or prosody 
keyword-speaker co-occurrence matrix. The bi-gram model and 
the co-occurrence matrix are then analyzed using probabilistic 
latent semantic analysis (PLSA) to reliably estimating the 
parameters of bi-gram and to find a compact latent prosody space 
to represent the constellation of speaker, respectively s. Finally, 
the NAQ-based GMMs (NAQ-GMMs), and LPAs are fused with 
conventional mel-scale frequency cepstral coefficients (MFCCs)-
based GMMs to complement each other. 

This paper is organized as follows. Section 2 gives the 
information about 2001 NIST Speaker Recognition Evaluation 
Corpus [6] and the experimental conditions used through this 
paper. Section 3 gives the procedures to model the dynamic of 
NAQs. Section 4 describes the proposed LPA-based approaches. 
Section 5 reports the fusion of acoustic, glottal and prosodic 
information and the final experimental results. Some conclusions 
are given in the last section. 

 
2. NIST 2001 SPEAKER RECOGNITION 

EVALUATION CORPUS AND EXPERIMENTAL 
CONDITIONS 

 
All approaches proposed in this paper are evaluated on the 

one speaker detection task of NIST 2001 Speaker Recognition 
Evaluation [6] using only the basic evaluation corpus, i.e., no 
extended data is used. In this task, there are in total 174 target 
speakers. Each speaker comes with 2-minute enrollment speech. 
Beside, there are 2,038 target and 20,380 imposter trials, 
respectively. Each trial is about 30-second length in average. 

To construct a speaker verification baseline system, a 1024-
mixture universal background model (UBM) [5] is established 
from the enrollment speech of all 174 speakers. Then, for each 
speaker, a MAP-GMM speaker model is built using the UBM and 
the speaker’s own enrollment speech. 38 mel-frequency cepstral 
coefficients (MFCCs) including 12 MFCCs, 12 Δ-MFCCs, 12 Δ2-
MFCCs, Δ-log-energy and Δ2- log-energy are computed with 
window size of 30 ms and frame shift of 10ms. Feature domain 
cepstrum mean subtraction (CMS) and score domain T-norm are 
also utilized to partially resist the channel/handset distortion. 

For utilized prosodic information, the pitch and energy 
contours of all utterances in corpus are extracted using the popular 
Wavesurfer/Snack sound toolkit and are stylized using the piece-
wise curve fitting approach. 



Five prosodic features are extracted for each found segment 
after the piece-wise stylization. They include the (1) pitch slope, (2) 
energy slope and (3) duration of the segment and (4) pitch and (5) 
energy mean jumping between two segments. The prosodic feature 
vectors were normalized by their global mean and variance of 
segments (except pauses). Finally vectors of N neighboring 
segments are concatenated into a super-vector (N*5 dimensions) to 
partially normalize the variation of speech prosody. 

Furthermore, in all the following experiment, the reported 
speaker detection performances are calculated and plotted using 
the NIST DET-Curve Plotting software version 2.1. 

 
3. NORMALIZED AMPLITUDE QUOTIENT 
 

In this paper, NAQs are treated as speaker-specific features 
and the procedures to extract and model NAQ contours will be 
described in detail: 
 
3.1. Automatic NAQ contour extraction 
 

NAQ is usually measured by first estimating the glottal 
speech waveform derivative of a short and stable input speech 
signal through an inverse filtering processing using time-varying 
optimized formants [4]. It then picks one period of stable signal 
and calculates the ratio of the largest peak-to-peak amplitude and 
the largest amplitude of the cycle-to-cycle minimum derivative 
and finally normalizes the amplitude quotient ratio based on the 
underlying fundamental frequency (F0). 

However, in this study, it is desired to extract the NAQ 
contour of the whole enrollment utterances of a speaker in order to 
learn the dynamic phonation behavior of the speaker. For this 
purpose, the HUT Aparat toolkit [7] is modified to extract the 
values of per-frame NAQ under the guiding of corresponding 
pitch contours. The per-frame NAQs are further smoothed to 
become a NAQ contour and to suppress some estimation noise. A 
typical example of the extracted NAQ contour from the 
enrollment speech of the speaker no. 5007 of NIST 2001 Speaker 
Recognition Evaluation Corpus is shown in Fig. 1 and the 
generated NAQ contour is shown in Fig. 2. 
 
3.2. GMM-based NAQ dynamic modeling 
 

A Typical example of histogram of the smoothed per-frame 
NAQs is shown in Fig. 3. From the figure, it is worthy noting that 
per-frame NAQs already have certain discriminative capacities. 
However, Fig. 2 also suggests that it is necessary to model the 
intrinsic dynamic nature of NAQ contours. Therefore, in this 
study, the per-frame values of the NAQ contour and their first-
order derivative are combined into a two-dimensional feature 
vector to represent the dynamic of NAQ contours. GMMs are then 
trained from the enrollment speech of each speaker to learn the 
phonating behavior of each speaker. 

Furthermore, it is found in a preliminary experiment that 
although that NAQs are already normalized by the underlying F0 
to remove any correlation between NAQs and F0s. Some weak 
connections between NAQ and F0 are still observed. The reason is 
not yet clear but may be due to the estimation error of pitch or 
NAQ. Therefore the pre-frame log-pitch and log-energy are 
further combined with NAQs to form a six-dimensional feature 
vectors to train the GMM-based speaker models.  

 
 
Figure 1. A typical example of the NAQ contour extraction using 
HUT Aparat toolkits on the enrollment speech of the speaker no. 
1830 of NIST 2001 Speaker Recognition Evaluation Corpus. 
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Figure 2. A typical example of the extracted NAQ contour on the 
enrollment speech of the speaker no. 5007 of NIST 2001 Speaker 
Recognition Evaluation Corpus. Here those light-blue dots are the 
raw per-frame NAQs estimated using the modified HUT Aparat 
toolkits and those dark-blue dots indicate the smoothed NAQ 
contour.  
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Figure 3. Histograms of NAQ features of the speakers no. 1002 
and 1830, respectively, of NIST 2001 Speaker Recognition 
Evaluation Corpus, respectively. In this example, speaker no. 1002 
speaks in a relax way and speaker no.1830 is more tense. 
 
4. LONG-SPAN LATENT PROSODY ANALYSIS 

 
The procedures of applying LPA for bi-gram model 

smoothing and prosody keyword-speaker co-occurrence matrix 



decomposition are shown in Fig. 4 and 5, respectively. Both 
approaches include the same prosodic contours stylization, VQ-
based automatic prosody labeling and prosody keyword parsing 
modules in the front-end. It is worthy noting that, by using the 
parser, the length of prosody keyword could be expanded from 
single- to multi-state words and the long-span temporal 
information could be well explored. 
 
4.1. PLSA-based bi-gram smoothing 
 

Since the amount of training and trial data are usually limited 
in real-life applications, the estimated prosody keyword bi-gram 
speaker models may not be reliable even for a small-scale bi-gram. 
Usually, this problem is alleviated by conventional discounting or 
backing-off method. However, those methods do not consider the 
behavior of speech prosody and may remove the unique prosodic 
characteristic of speakers. Therefore, in this study, PLSA is 
utilized to decompose the bi-gram speaker models to find the 
principle prosody cues and to remove the noisy dimensions with 
small eigen-values in order to reconstruct smoother bi-gram 
models. The detail procedures are shown in Fig. 4. 

 

 
 

Figure 4. Block diagram of the proposed PLSA-based n-gram 
speaker model smoothing approach: (a) construction of the n-gram 
speaker model, (b) PLSA-based n-gram smoothing, where w, d 
and z are the indices of n-gram terms and latent prosody factors, 
respectively. 
 
4.2. PLSA-based latent prosody space analysis 
 

The whole n-gram models generated in previous subsection 
could be treated as the estimates of long-term prosodic 
characteristics of speakers. Therefore, PLSA technique is 
proposed here to further explore the relationship between different 
speakers and keywords. The purpose is to find a compact latent 
prosody space to further reduce the amount of the required 
parameters of speakers’ n-gram models. 

The detail back-end procedures (see Fig. 5) include: (1) 
calculating the co-occurrences statistics of smoothed n-gram 
counts (or frequencies) of speakers to form a prosody n-gram 
terms-speakers co-occurrence matrix, (2) decomposing the co-
occurrence matrix using PLSA to build a compact latent prosody 
space (3) projecting and reconstructing back the speakers’ n-gram 
models from the compact latent prosody space. By projecting all 
speakers in the compact latent prosody space, the numbers of 
parameters of speaker’s n-gram models could be further reduced. 

 
Figure 5. Block diagram of the proposed PLSA-based latent 
prosody analysis for decomposing the prosody keyword-speaker 
co-occurrence matrix: (a) construction of the n-gram term-speaker 
co-occurrence matrix, (b) PLSA-based dimension reduction, 
where w, d and z are the indices of n-gram terms, speaker and 
latent prosody factors, respectively. 
 

5. EXPERIMENTS AND SYSTEM FUSION 
 
In this section, the performances of several different speaker 

verification approaches are compared and fused together under the 
experimental conditions previously described in Section 2. 

 
5.1. MAP-GMM and prosody bi-gram speaker model 

 
First of all, the performance of the conventional MAP-GMM-

based speaker models and the popular T-norm score normalization 
approach were tested. For T-norm approach, a long list of cohort 
speakers was selected by pick up 50 most closed speakers (in the 
sense of recognition scores). The results are shown in Fig. 6 and 
their corresponding EERs are given in Table 1. Could be seen from 
the figure and table, the EER of the MAP-GMM are 12.4% and T-
norm could dramatically improve the EER to 9.5%. Therefore, T-
norm is quite helpful under mismatch channel/handset mismatch 
environment. 

The performance of the prosody keyword bi-gram model with 
Good-Turing smoothing method is also shown in Fig. 6 and Table 
1. It is worth nothing that the performance, 31.2% and 29.6% 
EERs for single- and multi-state prosody words, respectively, may 
not be satisfied. However, there are only 2-minute training and 30-
second trial data (in average). 

 
5.2. NAQ-GMMs 

 
The NAQ-GMM approaches are then evaluated. A GMM-

based speaker model for each registered speaker and one UBM are 
trained from the enrollment NAQ features and the verification 
scores are normalized using T-norm algorithm. 

The results are shown in Fig. 6 and Table 1. It shows that 
NAQ-GMM could decrease the EER of pitch+energy system from 
32.3% to 30.3%. Moreover, after fusing with the scores of NAQ-
GMM, the performance of MAP-GMM+T-norm was improved 
from 9.5% to 9.4%. This result indicates that NAQ is informative 
and useful. 
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5.3. PLSA-based bi-gram smoothing and decomposition 
 

One single- and one multi-state prosody word bi-grams with 
11 and 20 states, respectively, were tested. The number of latent 
factors of the bi-gram speaker model was empirically decreased 
from 20 to eight and 11 to eight, respectively. The number of 
parameters for each speaker’s bi-gram model was then reduced 
from 391 to 160 and 118 to 88, respectively. As shown in Fig. 6 
and Table 1 the EERs were reduced from 31.2% and 29.6% to 26.8 
and 26.5%, respectively. 

The performance of the latent prosody space analysis 
approach is also shown the Fig. 6 and Table 1. Here, the number of 
latent factors was empirically set to 90 and the numbers of 
parameters for each speaker’s bi-gram model were reduced to 202 
and 58 in average, respectively. EERs of 26.8% and 25.9% were 
achieved, respectively. These results show that PLSA could catch 
long-span prosodic cues and find a compact latent prosody space 
to represent the constellation of speakers. 

 
5.4. System fusion 
 

The scores of the long prosody keyword-based PLSAs with 
different length, NAQ-based GMMs and the conventional MFCC-
based MAP-GMMs were then fused to see if they are 
complemented to each other on the situation of limited training and 
trial data. For this purpose, the popular LNKnet pattern 
classification software from MIT Lincoln Laboratory was applied. 
A multi-layer perceptron (MLP) with two output neurons was 
chosen. Several different combinations of systems had been tested. 
The results are shown in Fig. 6 and Table 1. 

It could be seen from the figure and table, the EERs of the 
MAP-GMM and MAP-GMM+Tnorm were improved from of 
12.4% and 9.5% to 10.3% and 8.3%, respectively. Furthermore, 
best EER of 7.8% was achieved by fusing all systems. These 
results show that MAP-GMMs, the PLSAs and the NAQ-GMM 
approaches are complement to each other. 

 
6. CONCLUSIONS 

 
In this paper, NAQ-GMMs and two PLSA-based approaches 

were proposed to improve the performance of speaker verification 
system under the situation of limited training and trial data. By 
fusing together the glottal-, prosodic- and spectral-level 
information, the EERs of MAP-GMM and MAP-GMM+T-norm 
were improved from 12.4% and 9.5% to 10.3% and 8.3% and 
finally to 7.8%, respectively. It is worth noting that only 2-minute 
and 30-second (in average) training and trial speech are used here, 
respectively. Therefore, the proposed approaches are promising 
and worthy further studying for real-life speaker verification 
systems. 
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Figure 6. Speaker detection performance evaluation of various 
speaker verification methods on the standard one speaker 
detection task of the 2001 NIST Speaker Recognition Evaluation 
Corpus (EERs in descent order, multi-state prosody words only). 
 
 

Table 1. Performance (EER in %) comparison between different 
systems on the standard one speaker detection task of the 2001 
NIST Speaker Recognition Evaluation Corpus.  

 EER (%) 
Keyword length Single-state words Multi-state words

(1) MAP-GMM 12.4 
(2) MAP-GMM+T-norm   9.5 
(3) Pitch+Energy 32.2 
(4) NAQ+Pitch+Energy 30.3 
(5) Good-Turing Smooth. 31.2 29.6 
(6) PLSA Smooth. 26.8 26.5 
(7) PLSA Decomp. 26.8 25.9 
(8) Fusion: (1)+(4) 12.4 
(9) Fusion: (1)+(5) 10.4 10.6 
(A) Fusion: (1)+(6) 10.6 10.3 
(B) Fusion: (2)+(4)   9.4 
(C) Fusion: (2)+(5) 8.4 8.3 
(D) Fusion: (2)+(6) 8.4 8.3 
(E) Fusion: ALL 8.0 7.8 

 
 


