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Abstract
The automatic prosodic annotation of large speech corpora

gains increasing consideration since appropriate databases for
the training of prosodic models in speech synthesis and recog-
nition are needed. On linguistic level, correct phrase and accent
marking are essential processing steps. The authors developed
a neural network based method for signal-based phrase break
prediction and tested this method across two different speech
databases.

The structure of the multilayer feed-forward neural network
(MFN) had been optimized and adapted to the target database
and to the specific annotation task. The method is rather data
sensitive—depending on different human labelers and small dif-
ferences across training databases, like frequency of occurrence
or strength of phrase breaks. The MFN method can be eas-
ily adapted to the characteristics of different databases (long or
short phrases, special formats like dates or web addresses, etc.).
If applied to different databases which contain phrase mark-
ers of human experts, phrase break recognition rates vary from
79 % up to 97 %.

1. Introduction
Automated speech processing requires large speech databases
to enable corresponding variability of natural speech, to provide
appropriate training material for algorithms and, in general, to
enhance speech quality. Besides large acoustic inventories for
corpus-based speech synthesis, there is also an increasing de-
mand for prosodically annotated speech corpora in research and
for commercial use since the correct modeling of prosodic fea-
tures has a strong effect on the achievable overall speech quality
in speech synthesizers.

With respect to necessary databases in several languages,
appropriate automatic tools for segmentation and annotation are
required. The prediction of speech parameters can be imple-
mented by rule-based or data-driven approaches. A MFN is
directly trained on the available speech data and can therefore
be easily adapted to different training databases and application
scenarios.

In the study, the neural network input vector is derived from
signal based and linguistic features that can be obtained by stan-
dard signal processing and by available preprocessing modules
of speech synthesis. Neural networks can deal with the resulting
extensive feature vectors, focusing on the required and ignoring
the redundant features [3]. The study describes the optimization
of MFNs for the phrase break prediction. A similar MFN opti-
mization was already used in the prediction of suitable Fujisaki
parameters for the f0 contour modeling [10].

Neural networks pose difficulties to introspection since the
weight matrix of the network hides the modeling process. Nev-
ertheless, it is possible to analyze and to optimize external as-

pects like the training process, the network structure or the input
feature vector.

2. Database and annotation
The TC-Star project aims at producing speech corpora that can
be used for building advanced state-of-the-art TTS systems as
well as for intralingual and interlingual research on voice con-
version and expressive speech [7]. It is going to provide high-
quality language resources for UK English, Spanish and Man-
darin. The voices recordings are sampled at 96 kHz and with
24 bit precision and each voice is subdivided into several corpus
parts: Novels and short stories are included as well as expres-
sive speech.

The required volume of 10 h of net speech per voice cor-
responds to about 90 000 running words that need to be exten-
sively annotated. Because of the sheer volume of data most of
this task has to be performed automatically.

The data analyzed in this report are built from single sen-
tences and short paragraphs read by the UK voice rob. The
training data consist of 158 sentences with 2 344 words contain-
ing 3 596 syllables. This corpus solely consists of well-defined
read speech and does not contain spontaneous utterances.

The necessary prosodic transcription includes the detection
of phrase breaks and pitch accents. Both features have been an-
notated using two levels: phrase breaks are divided into minor
(intermediate intonational phrases) and major breaks (full into-
national phrases). The pitch accents can be normal or emphatic.

An example sentence and its base frequency contour is
shown in figure 1. It includes the following required prosodic
markup for the description of pitch accent and phrase structure:

As regards <b> nitrogen# levels, <BB>we would
need reliable statistics# <b> and data# from the
various Member States#. <BB>

A word followed by # is marked as normally, the one fol-
lowed by ## as emphatically accented. Intermediate intona-
tional phrases are delimited by <b>, whereas major phrase
breaks are marked with <BB>. The used corpus contains only
well-defined read speech and is therefore only labeled with one
level of stress.

3. Empirical neural network topology
So far, neural network theory does not provide determinate rule
to obtain optimal network structure, number of hidden layers,
transfer functions, etc. for a particular task (compare also [11]).
The employed neural network structure in this study is derived
from similar experiments in pattern recognition and prediction
and led to good results for a variety of problems.
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Figure 1: Example sentence of the TC-STAR corpus rob200
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Figure 2: Multilayer feed-forward neural network with three
input neurons, six and two neurons in the two hidden layers and
one output neuron

The prediction is done by a multilayer feed-forward net-
work with a variable number of neurons in the two hidden lay-
ers (figure 2). The input unit number is equal to the size of the
feature set, and one output neuron for the requested parameter is
used. All neurons are realized by a sigmoid activation function
and are trained with backpropagation.

The output value for each pattern is set to a value between
zero and one, depending on the number of classes for the train-
ing. The training pattern set is grouped by category and patterns
are duplicated as necessary to get groups of equal strength.

4. Feature vectors
A large number of input features for the prediction of prosodic
parameters have been proposed which model fundamental fre-
quency, duration, energy and linguistic information on syllabic
and word level [1], especially

• F0 onset, offset and linear regression coefficients

• Absolute and normalized duration

• Energy contour linear regression coefficients

• Part of speech (POS) tags [8]

• Rule-based boundary labels. [5]

Additionally to these features, the implemented algorithm
is based on the following assumptions:

1. Only word-level features are used, as syllable-level fea-
tures do not provide additional performance according to
[2].

2. A configurable context window provides the network
with information of previous and following words. The
best window size has to be determined by optimization.

3. If possible, both normalized and absolute values are pro-
vided. Although normalized variables seem to serve in-
tuitively better as network input, they may be seriously
outperformed by absolute values in some cases [4].

The following input fields are provided:

Duration Several different features describing the duration of
the current word are provided:

• Absolute word duration.

• Normalized word duration as calculated from the mean
phoneme durations of the whole corpus.

• Scale factor comparing absolute and normalized word du-
rations.

Linguistic information The output of the Festival speech syn-
thesis system [6] is leveraged to provide information about POS
tags and possible phrase structure:

• The POS calculated by the Festival HMM tagger is con-
sidering the Penn Treebank notation with 45 classes.

• A derived POS tag which uses only 16 simplified classes.

• Phrase break information from the probabilistic Festival
tagger that is enabled for American and British English
voices included in Festival. It uses the probabilities of
breaks based on the POS of the previous and following
words of a break combined with an ngram model of the
break distribution to optimize the phrasing.



Base frequency and power contour The logarithmic f0 and
power contours A(t) are described with the following features
[8], they are calculated for raw as well as for smoothed contours
where applicable.

• First signal value Aon. For f0 contours, the first value of
the first voiced segment is used.

• Last signal value Aoff. For f0 contours, the last value of
the last voiced segment is used.

• Maximum and minimum value Amin and Amax.

• Mean value Amean, for f0 contours only voiced segments
are included.

• Absolute and relative position of the maximum and min-
imum value tmin and tmax.

• Linear regression coefficients m and n and residual sum
of squares R for the contour. For f0 contours, only voiced
segments are considered.

Fujisaki parameters The well-known Fujisaki model (intro-
duction e. g. in [9]) provides parameterization of f0 contours
according to physical and physiological aspects. It is available
for many languages, e. g. Korean, Mandarin or German [13].
The f0 contour is modeled by Fujisaki phrase and accent com-
mands which should correspond to perceived prosodic features.
To extract word level features related to the Fujisaki parameter-
ization, the smoothed f0 contour is processed by an automatic
Fujisaki parameter extraction tool [12]. Afterwards, the follow-
ing input components are calculated:

• Accumulated accent area (score) per word for all Fujisaki
accent commands.

• Phrase command amplitude if there is a phrase command
in the current word or in a possibly following silence.

• Maximum accent score per Fujisaki phrase as derived
from the Fujisaki phrase commands.

Structural information Certain additional positional and
structural components are provided. Phrase segmentation for
these features is obtained from the phrase break annotation of
the Festival synthesis.

• Number of syllables in the current word, current phrase
and previous phrase.

• Index of the current word in the phrase and utterance.

• Index of the first syllable of the current word in the phrase
and utterance.

• Start and end time of the current word and phrase.

5. Network training and results
Different network structures and training scenarios have been
evaluated to determine the performance of the described ap-
proach. The analysis concentrates on the following questions:

• How well can phrase breaks be recognized? Does the
result improve if the phrase break categories for inter-
mediate and final breaks are combined into one class?

• Is the approach suitable for predictive use, i. e. can the
labeling be inferred by a network that is only trained on
a small part of the whole corpus?

• Is the resulting network independent from specific
databases or speakers?

C N1 N2 RRNB RRB RRBB RR RR

0 15 10 94.8 52.6 71.1 88.9 72.8
1 15 10 97.3 40.4 86.7 90.9 74.8
2 10 6 97.5 45.6 95.6 92.2 79.6
2 15 10 98.1 40.4 93.3 92.1 77.3

Table 1: Recognition rates for 75 % training set and separate
break classes (C: context size, N1, N2: number of neurons in
the hidden layers)

C N1 N2 RRNB RRB|BB RR RR

0 15 10 96.0 80.6 93.3 88.3
1 15 10 96.3 86.4 94.6 91.4
2 10 6 96.0 77.7 92.8 86.9
2 15 10 97.5 75.7 93.7 86.6

Table 2: Recognition rates for 75 % training set and merged
intermediate and major break classes (C: context size, N1, N2:
number of neurons in the hidden layers)

5.1. Phrase break recognition

The resulting recognition rates for the rob200 corpus of a 75 %
training set extracted from all patterns and with separated as
well as with merged intermediate and major break categories
are displayed in table 1 and 2. The columns RRNB, RRB|BB,
RRB and RRBB contain the recognition rates for words fol-
lowed by no break, any break, an intermediate break or a major
phrase boundary, respectively. RR denotes the overall recog-
nition rate independent from the break category and RR the
arithmetic mean of all recognition rates for the single classes.

Two network structures with different number of neurons
N1 and N2 in the two hidden layers and various context sizes
C are compared. Because of the varying recognition results
of different classes for one network, RR is always lower than
RR. Improved context knowledge as well as an increased num-
ber of neurons generally leads to better recognition rates. The
largest network with ±2 words context size seems to generalize
worse, fitting more of the noise in the data set than the smaller
networks. The overall recognition rate for merged categories is
about 2 %, the averge class recognition rate about 12 % better
than the rate observed for separate classes.

5.2. Phrase break prediction

Table 3 compares the results of a training with a 75 % training
set to one with a training set of only 25 % of all patterns, thus
modeling a partially hand-labeled corpus where the rest should
be annotated automatically. The results are only slightly worse
for the 25 % training set and the network seems to be able to
derive all the specific prosodic features influencing the phrase
segmentation for a given speaker from a small part of the whole
corpus (25 % corresponds to about 40 sentences).

5.3. Speaker dependency

To test the speaker dependency of the trained network, a to-
tally different database is used for comparison purpose. Table
4 shows a summary of the results for the rob and the kate cor-
pora. The kate corpus from a female speaker consists of 1 197
short phrases that contain mainly names, dates, numbers and
web addresses.



RR RR

C N1 N2 75 % 25 % 75 % 25 %

0 15 10 93.3 92.6 88.3 89.3
1 15 10 94.6 93.0 91.4 88.0
2 10 6 92.8 92.3 86.9 86.1
2 15 10 93.7 92.9 86.6 85.7

Table 3: Recognition rates with 75 % and 25 % training sets and
merged intermediate and major break classes (C: context size,
N1, N2: number of neurons in the hidden layers)

RRS RRM RRS RRM

kate 75 % 80.3 78.6 83.8 83.2
kate 25 % 79.2 77.2 80.8 80.2
rob 100 % 71.1 70.0 77.7 75.1

Table 4: Recognition rates of the kate corpus for a neural net-
work with 15 and 10 neurons in the hidden layers and a context
size of ±2 words. It includes training sets for split and merged
break classes. (Test patterns are completely different from train-
ing patterns.)

The average recognition rate for a network which is trained
on the rob and used for the kate corpus is about 3 % to 6 %
worse than for the one trained on the kate corpus itself.

6. Conclusion
The authors developed a neural network based method for
signal-based phrase break prediction and tested this method
across two different speech databases. The structure of the
MFN was optimized and adapted to the specific target database
and to the specific annotation task within TC-STAR project.
The automatic annotation results depend on different hu-
man reference labelers and small differences across training
databases.

Nevertheless, MFN method can be easily adapted to the
characteristics of different databases. The recognition perfor-
mance for a network trained on first database and tested on the
second independent database is only about 3 % to 6 % worse
than performing the experiment on first database only. In realis-
tic application scenario one can expect phrase break recognition
rates from about 79 % up to 97 %.

The authors will further study potential speaker, database
but also language dependencies of the proposed MFN method
and will extensively compare this method with other existing
rule-based and data-driven approaches.
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