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Abstract
Recognition of tone and intonation is essential for speech recog-
nition and language understanding. However, most approaches
to this recognition task have relied upon extensive collections
of manually tagged data obtained at substantial time and finan-
cial cost. In this paper, we explore unsupervised clustering ap-
proaches to recognize pitch accent in English and tones in Man-
darin Chinese. In unsupervised Mandarin tone clustering exper-
iments, we achieve 57-87% accuracy on materials ranging from
broadcast news to clean lab speech. For English pitch accentin
broadcast news materials, results reach 78%. These resultsindi-
cate that the intrinsic structure of tone and pitch accent acoustics
can be exploited to reduce the need for costly labeled training
data for tone learning and recognition.

1. Introduction
Tone and intonation play a crucial role across many languages.
However, the use and structure of tone varies widely, ranging
from lexical tone which determines word identity to pitch ac-
cent signalling information status. Here we consider the recog-
nition of lexical tones in Mandarin Chinese syllables and pitch
accent in English.

Although intonation is an integral part of language and is
requisite for understanding, recognition of tone and pitchac-
cent remains a challenging problem. The majority of currentap-
proaches to tone recognition in Mandarin and other East Asian
tone languages integrate tone identification with the general task
of speech recognition within a Hidden Markov Model frame-
work. In some cases tone recognition is done only implicitly
when a word or syllable is constrained jointly by the segmen-
tal acoustics and a higher level language model and the word
identity determines tone identity. Other strategies buildexplicit
and distinct models for the syllable final region, the vowel and
optionally a final nasal, for each tone.

Recent research has demonstrated the importance of con-
textual and coarticulatory influences on the surface realization
of tones.[1] The overall shape of the tone or accent can be sub-
stantially modified by the local effects of adjacent tone andin-
tonational elements. Furthermore, broad scale phenomena such
as topic and phrase structure can affect pitch height, and pitch
shape may be variably affected by the presence of boundary
tones. These findings have led to explicit modeling of tonal
context within the HMM framework. In addition to earlier
approaches that employed phrase structure, several recentap-
proaches to tone recognition in East Asian languages [2, 3] have
incorporated elements of local and broad range contextual influ-
ence on tone. Many of these techniques create explicit context-
dependent models of the phone, tone, or accent for each context
in which they appear, either using the tone sequence for leftor
right context or using a simplified high-low contrast, as is nat-

ural for integration in a Hidden Markov Model speech recog-
nition framework. In pitch accent recognition, recent workby
[4] has integrated pitch accent and boundary tone recognition
with speech recognition using prosodically conditioned mod-
els within an HMM framework, improving both speech and
prosodic recognition.

Since these approaches are integrated with HMM speech
recognition models, standard HMM training procedures which
rely upon large labeled training sets are used for tone recogni-
tion as well. Other tone and pitch accent recognition approaches
using other classification frameworks such as support vector
machines [5] and decision trees with boosting and bagging [6]
have relied upon large labeled training sets - thousands of in-
stances - for classifier learning. This labelled training data is
costly to construct, both in terms of time and money, with es-
timates for some intonation annotation tasks reaching tensof
times real-time. This annotation bottleneck as well as a theo-
retical interest in the learning of tone motivates the use ofun-
supervised or semi-supervised approaches to tone recognition
whereby the reliance on this often scarce resource can be re-
duced.

Little research has been done in the application of unsuper-
vised techniques for tone and pitch accent recognition. Some
preliminary work by [7] employs self-organizing maps and
measures of f0 velocity for tone learning. In this paper we ex-
plore the use of spectral and standard k-means clustering for
unsupervised acquisition of tone. We find that in clean read
speech, unsupervised techniques can identify the underlying
Mandarin tone categories with high accuracy, while even on
noisier broadcast news speech, Mandarin tones can be recog-
nized well above chance levels, with English pitch accent recog-
nition at 96% of the levels achieved with fully supervised Sup-
port Vector Machine (SVM) classifiers.

The remainder of paper is organized as follows. Section 2
describes the data sets on which English pitch accent and Man-
darin tone learning are performed and the feature extraction pro-
cess. Section 3 describes the unsupervised techniques employed
and Section 4 the experiments and results. Section 5 presents
conclusions and future work.

2. Data Sets
We consider two corpora: one in English for pitch accent recog-
nition and two in Mandarin for tone recognition. We introduce
each briefly below.

2.1. English Corpus

We employ a subset of the Boston Radio News Corpus [8], read
by female speaker F2B, comprising 40 minutes of news mate-
rial. The corpus includes pitch accent, phrase and boundary



Figure 1: Contours for canonical Mandarin tones

tone annotation in the ToBI framework [9] aligned with man-
ual transcription and syllabification of the materials. Following
earlier research [10, 6], we collapse the ToBI pitch accent la-
bels to four classes: unaccented, high, low, and downstepped
high for experimentation.

2.2. Mandarin Chinese Tone Data

Mandarin Chinese is a language with lexical tone in which each
syllable carries a tone and the meaning of the syllable is jointly
determined by the tone and segmental information. Mandarin
Chinese has four canonical lexical tones, typically described as
follows: 1) high level, 2) mid-rising, 3) low falling-rising, and
4) high falling.1 The canonical pitch contours for these tones
appear in Figure 1. We employ data from two distinct sources
in the experiments reported here.

2.2.1. Read Speech

The first data set is very clean speech data drawn from a col-
lection of read speech collected under laboratory conditions by
[11]. In these materials, speakers read a set of short sentences
where syllable tone and position of focus were varied to assess
the effects of focus position on tone realization. Focus here
corresponds to narrow focus, where speakers were asked to em-
phasize a particular word or syllable. Tones on focussed sylla-
bles were found to conform closely to the canonical shapes de-
scribed above, and in previous supervised experiments using a
linear support vector machine classifier trained on focusedsyl-
lables, accuracy approached 99%. For these materials, pitch
tracks were manually aligned to the syllable and automatically
smoothed and time-normalized by the original researcher, re-
sulting in 20 pitch values for each syllable.

2.2.2. Broadcast News Speech

The second data set is drawn from the Voice of America Man-
darin broadcast news, distributed by the Linguistic Data Con-
sortium2, as part of the Topic Detection and Tracking (TDT-
2) evaluation. Using the corresponding anchor scripts, auto-
matically word-segmented, as gold standard transcription, au-
dio from the news stories was force-aligned to the text tran-
scripts. The forced alignment employed the language porting
functionality of the University of Colorado Sonic speech rec-
ognizer [12]. A mapping from the transcriptions to English

1For the experiments in this paper, we exclude the neutral tone,
which appears on unstressed syllables.

2http://www.ldc.upenn.edu

phone sequences supported by Sonic was created using a Chi-
nese character-pinyin pronunciation dictionary and a manually
constructed mapping from pinyin sequences to the closest cor-
responding English phone sequences.3

2.3. Acoustic Features

We employ a common representation for both tone and pitch
accent recognition. In prior supervised experiments usingsup-
port vector machines, this representation achieved competitive
recognition levels for tone and pitch accent recognition. The
representation is described below.

Using Praat’s [13] ”To pitch” and ”To intensity” functions
and the alignments generated above, we extract acoustic fea-
tures for the prosodic region of interest. This region corre-
sponds to the “final” region of each syllable in Chinese, in-
cluding the vowel and any following nasal, and to the sylla-
ble nucleus in English.4 For all pitch and intensity features
in both datasets, we compute per-speaker z-score normalized
log-scaled values. We extract pitch values from five points
evenly spaced across valid pitch tracked points in the syllable.
We also compute mean pitch across the syllable. Recent pho-
netic research [14] has identified significant effects of carryover
coarticulation from preceding adjacent syllable tones. Tomin-
imize these effects consistent with the pitch target approxima-
tion model [14], we compute slope features based on the second
half of this final region, where this model predicts that the un-
derlying pitch height and slope targets of the syllable willbe
most accurately approached. We further log-scale and normal-
ize slope values to compensate for greater speeds of pitch fall
than pitch rise[15].

3. Unsupervised Learning
The bottleneck of time and monetary cost associated with man-
ual annotation has generated significant interest in the develop-
ment of techniques for machine learning and classification that
reduce the amount of annotated data required for training. Like-
wise, learning from unlabeled data aligns with the perspective
of language acquisition, as child learners must identify these
linguistic categories without explicit instruction by observation
of natural language interaction. Of particular interest are tech-
niques in unsupervised learning where the structure of unla-
beled examples may be exploited. Here we consider unsuper-
vised techniques with no labeled training data.

A wide variety of unsupervised clustering techniques have
been proposed. In addition to classic clustering techniques such
as k-means, recent work has shown good results for many forms
of spectral clustering including those by [16, 17, 18]. In the un-
supervised experiments reported here, we employ asymmetric
k-lines clustering by [18] using code available at the authors’
site, as our primary unsupervised learning approach. Asym-
metric clustering is distinguished from other techniques by the
construction and use of context-dependent kernel radii. Rather
than assuming that all clusters are uniform and spherical, this
approach enhances clustering effectiveness when clustersmay
not be spherical and may vary in size and shape. We will see
that this flexibility yields a good match to the structure of Man-
darin tone data where both shape and size of clusters vary across
tones. In additional contrastive experiments reported below,

3All tone transformations due to third tone sandhi are applied to
create the label set.

4We restrict our experiments to syllables with at least 50 ms of
tracked pitch in this final region.



we also compare k-means clustering, symmetric k-lines cluster-
ing [18], and Laplacian Eigenmaps [17] with k-lines clustering.
The spectral techniques all perform spectral decomposition on
some representation of the affinity or adjacency graph.

We contrast results under unsupervised learning with most
common class assignment and previous results employing fully
supervised approaches, such as SVMs.

4. Unsupervised Clustering Experiments
We executed four sets of experiments in unsupervised clustering
using the [18] asymmetric clustering algorithm.

4.1. Experiment Configuration

In these experiments, we chose increasingly difficult and natu-
ral test materials. In the first experiment with the cleanestdata,
we used only focused syllables from the read Mandarin speech
dataset. In the second, we included both in-focus (focused)and
pre-focus syllables from the read Mandarin speech dataset.5 In
the third and fourth experiments, we chose subsets of broadcast
news report data, from the Voice of America (VOA) in Man-
darin and Boston University Radio News corpus in English.

In all experiments on Mandarin data, we performed cluster-
ing on a balanced sampling set of tones, with 100 instances from
each class6, yielding a baseline for assignment of a single class
to all instances of 25%. We then employed a two-stage repeated
clustering process, creating 2 or 3 clusters at each stage.

For experiments on English data, we extracted a set of 1000
instances, sampling pitch accent types according to their fre-
quency in the collection. We performed a single clustering
phase with 2 to 16 clusters, reporting results at different num-
bers of clusters.

For evaluation, we report accuracy based on assigning the
most frequent class label in each cluster to all members of the
cluster.

4.2. Experimental Results

We find that in all cases, accuracy based on the asymmetric
clustering is significantly better than most common class as-
signment and in some cases approaches 96% of labelled clas-
sification accuracy. Unsurprisingly, the best results, in abso-
lute terms, are achieved on the clean focused syllables, reaching
87% accuracy. For combined in-focus and pre-focus syllables,
this rate drops to 77%. These rates contrast with 99-93% accu-
racies in supervised classification using linear SVM classifiers
with several thousand labelled training examples.

On broadcast news audio, accuracy for Mandarin reaches
57%, still much better than the 25% level, though below a 72%
accuracy achieved using supervised linear SVMs with 600 la-
beled training examples. Interestingly, for English pitchaccent
recognition, accuracy reaches 78.4%, approximately 96% ofthe
81.3% accuracy achieved with SVMs on a comparable data rep-
resentation.

4.3. Contrastive Experiments

We further contrast the use of different unsupervised learners,
comparing the three spectral techniques and k-means with Eu-

5Post-focus syllables typically have decrease pitch heightand range,
resulting in particularly poor recognition accuracy. We chose not to
concentrate on this specific tone modeling problem here.

6Sample sizes were bounded to support rapid repeated experimenta-
tion and for consistency with the relatively small VOA data set.

Figure 2: Differences for alternative unsupervised learners
across numbers of clusters.

clidean distance. All contrasts are presented for English pitch
accent classification, ranging over different numbers of clus-
ters, with the best parameter setting of neighborhood size.The
results are illustrated in Figure 2. Results for k-means andthe
asymmetric clustering technique are presented for the clean fo-
cal Mandarin speech under the standard two stage clustering.

The asymmetric k-lines clustering approach consistently
outperforms the corresponding symmetric clustering learner, as
well as Laplacian Eigenmaps with binary weights for pitch ac-
cent classification. Somewhat surprisingly, k-means clustering
outperforms all of the other approaches when producing 3-14
clusters. Accuracy for the optimal choice of clusters and pa-
rameters is comparable for asymmetric k-lines clustering and
k-means, and somewhat better than all other techniques consid-
ered. The careful feature selection process for tone and pitch
accent modeling may reduce the difference between the spec-
tral and k-means approaches. In contrast, for the four tone
classification task in Mandarin using two stage clustering,the
best clustering using asymmetric k-lines strongly outperforms
k-means, at 87% and 74.75% accuracy respectively.

4.4. Discussion

An examination of both the clusters formed and the structureof
the data provides insight into the effectiveness of this process.
Figure 3 displays 2 dimensions of the Mandarin four-tone data
from the focused read speech, where normalized pitch mean
is on the x-axis and slope is on the y-axis. The separation of
classes and their structure is clear. One observes that rising
tone (tone 2) lies above the x-axis, while high-level (tone 1)
lies along the x-axis. Low (tone 3) and falling (tone 4) tones
lie mostly below the x-axis as they generally have falling slope.
Low tone (3) appears to the left of falling tone (4) in the figure,
corresponding to differences in mean pitch.

In clustering experiments, an initial 2- or 3-way split sepa-
rates falling from rising or level tones based on pitch slope. The
second stage of clustering splits either by slope (tones 1,2, some
3) or by pitch height (tones 3,4). These clusters capture thenat-
ural structure of the data where tones are characterized by pitch
height and slope targets.

5. Conclusion & Future Work
We have demonstrated the effectiveness of unsupervised tech-
niques for recognition of Mandarin Chinese syllable tones and
English pitch accents using acoustic features alone to capture
pitch target height and slope. Although outperformed by fully
supervised classification techniques using much larger samples



Figure 3: Scatterplot of pitch height vs pitch slope. Open Di-
amond: High tone (1), Filled black traingle: Rising tone (2),
Filled grey square: Low tone (3), X: Falling tone (4)

Unsup. Supervised

Mandarin Tone
Lab, In-focus 87% 99%
Lab, Pre & In-focus 77% 93%
Broacast News 57% 72%

English Pitch Accent
Broadcast News, 4 class 78% 81.3%

Table 1: Summary of experimental results

of labelled training data, these unsupervised techniques perform
well above most common class assignment, in the best cases ap-
proaching supervised levels. Table 1 presents a summary of ex-
perimental results. Unsupervised techniques achieve accuracies
of 87% on the cleanest read speech, reaching 57% on data from
a standard Mandarin broadcast news corpus, and over 78% on
pitch accent classification for English broadcast news.

Future work will consider a broader range of tone and into-
nation classification, including the richer tone set of Cantonese
as well as Bantu family tone languages, where annotated data
truly is very rare. We also hope to integrate a richer contextual
representation of tone and intonation consistent with phonetic
theory within this unsupervised framework.
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