
Decomposition of Pitch Curves in the General
Superpositional Intonation Model

Taniya Mishra, Jan van Santen and Esther Klabbers

Center for Spoken Language Understanding
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road, Beaverton, OR 97006, USA
{mishra, vansanten, klabbers }@cslu.ogi.edu

Abstract

This paper describes and applies a new algorithm for decom-
posing pitch curves into component curves, in accordance with
the General Superpositional Model of Intonation. According to
this model, which is a generalization of the Fujisaki model [3], a
pitch contour can be described as the sum of component curves
that are each associated with different phonological levels, in-
cluding the phrase, foot, and phoneme. The algorithm assumes
that the phrase curve is locally linear during intervals spanned
by a foot. The algorithm was evaluated using synthetically gen-
erated curves, and was found to accurately recover the synthetic
component curves. The algorithm was also evaluated in a per-
ceptual experiment, where speech generated by concatenation
of accent curves was shown to produce better speech quality
than speech based on direct concatenation of “raw” pitch curve
fragments.

1. Introduction
Recently, we proposed an approach to speech synthesis in which
a multi-level search process is used to find sequences of acoustic
units covering the target phoneme sequences, (left-headed) foot
sequences, and phrase sequences [13]. This approach, which we
shall refer to asMulti-Level Unit Sequence Synthesis, is based
on the General Superpositional Model of Intonation, according
to which a pitch contour can be described as the sum of com-
ponent curves that are each associated with different phono-
logical levels, specifically the phoneme, foot, and phrase [10,
12]. During synthesis, segmental perturbation curves, accent
curves and phrase curves are extracted from the acoustic unit,
foot, and phrase sequences, respectively, and are combined into
target pitch curves; these target curves are then imposed on
the acoustic unit sequences using standard pitch modification
methods. (Segmental perturbation curves represent short-lived
spikes around nasal-vowel boundaries, sharp elevations in fre-
quency during initial portions of vowels following obstruents,
and effects of intrinsic pitch)

This approach represents an attempt to combine the strengths
of the two different approaches to speech synthesis that are cur-
rently dominant:Unit selection synthesis, which preserves all
details of natural speech but struggles with coverage of the very
large combinatorial space of phoneme sequences and prosodic
contexts; anddiphone synthesis, which addresses coverage by
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generating rule-based synthetic target prosody and then impos-
ing it on acoustic units using signal modification methods. In
the Multi-Level Unit Sequence Synthesis approach, we use quasi-
natural target contours but impose these on acoustic unit se-
quences, thereby making it unnecessary to cover allcombina-
tions of phoneme sequences and prosodic contexts. We avoid
the discontinuities that would occur if we created target pitch
contours by raw concatenation of pitch contour fragments by
instead concatenating extracted accent curves and adding these
to smooth, continuous phrase curves.

One of the unsolved problems in this approach is the au-
tomatic decomposition of pitch curves into component curves.
This problem is far from trivial because (i) successive accent
curves may overlap in time and (ii) we want to impose few
if any constraints on the shapes of accent curves and phrase
curves. Two other superpositional approaches have been used
for F0 decomposition, one based on the Fujisaki model [3] and
the other based on the SFC model [21]. Each approach differs
from ours. The Fujisaki based approach imposes strong con-
straints on the curve shapes, while we impose few constraints
on the shapes of the accent curves. The SFC based approach
estimates the component curves using neural-nets based global
optimization, while we perform optimization on a per utterance
basis. The presented paper proposes and evaluates our algo-
rithm for decomposingF0 curves.

2. Pitch Decomposition Algorithm
2.1. Basic Assumptions

The pitch decomposition algorithm is based on the following
four assumptions:

1. Additive Decomposition of the Pitch Curve: The Gen-
eral Superpositional Model of Intonation [10, 12] states that,

F0(t) =
⊕
c∈C

⊕
k∈c

fc,k(t) (1)

whereC is a set of curve classes (e.g.,{phrase, accent, per-
turbation}) andk is a particular curve from a particular class.
The operator

⊕
representsgeneralized addition– an operator

that includes addition and multiplication as special cases. When
we assume thatC = {P, Ai}, whereP = phrase curve,Ai =
accent curve, and operator

⊕
represents addition, then:

F0(t) = P (t) + Σn
i Ai(t) (2)

For our present study, we are not considering perturbations to
be a separate curve class - high frequency perturbations are



smoothed out, and the remaining are grouped together with ac-
cent curves.

2. Different Temporal Scopes of the Component Curves:
As in the General Superpositional Model, it is assumed that
each of the component curves is tied to a distinct phonological
entity and follows a distinct time course. We assume here that
the phrase curve is tied to the phonological phrase and spans
the entire phrase length, whereas each accent curve is tied to
a distinct left-headed footand is left-aligned with the start of
the foot. Theleft-headed footis defined as an accented sylla-
ble followed by one or more unaccented syllables [5, 6]. The
sequence of syllables preceding the first accented syllable in a
phrase is called theanacrusis.

3. Piece-wise Linear Phrase Curve: It is assumed that a
phrase curve can be approximated byn line segments,pi, where
n is the number of feet in the phrase (Eq.3). Eachpi spans the
length of a foot. The points at which the phrase curve change
direction are calledinflection points.

pi(t) = βi(t) + γi, P = concatenate(pi) (3)

4. Accent Curves from Common Templates: Accent curve
shapes are unspecified in the General Superpositional Model,
except for the abstract property that accent curves for a given
class (e.g., single-peaked, yes/no rise) are all generated from a
class-specific template,Ei, using parameterized time warps [11].
Thus, for every accent curveAi, there exists a template curve
Ei (shared with similarly-shaped accent curves), such thatAi

equals a scaled (by a height factor,hi) and time warped replica
of Ei (Eq.4).

Ai(t) = hi × time warped(Ei(t)) (4)

Based on previous research [11], we assume that a single-
peaked accent curve, which ranges from 0 to a peak value and
again descends to 0, starts at the beginning of the associated
left-headed foot and finishes ator beyondthe end of the foot,
but, conservatively, no later than the point where the next ac-
cent curve reaches its peak.

2.2. Algorithm

Given these assumptions, the pitch decomposition algorithm in-
volves the following steps, formulated here for the special case
of single-peaked accent curves in declarative phrases:

1. Peak Detection: Given the raw pitch curve associated
with a given phrase, the number of feet in the phrase, and the
locations of all left-headed feet, one peak per foot is detected
using a robust peak detection algorithm based on isotonic re-
gression [23].

2. Parametrization: A template is characterized by 9 pitch
values that approximate a Gaussian sampled at equal time inter-
vals, with the first and last values rounded down to 0. A given
accent curve is characterized by a time warp, consisting of 9
time points associated with these 9 points in the template, and a
height parameter,hi. Because it is assumed that accent curves
start at the beginning of the foot, the first time warp parameter
is set equal to the foot start time. Thus, there are 9 parameters
(8 remaining time warp parameters and one height parameter)
to be estimated for each of then accent curves.

A phrase curve is characterized byn interconnected line
segments. Each segment begins at the starting point of a distinct
foot and spans the length of the foot. Since we are only consid-
ering all-sonorant declarative phrases for the present study, we
can assume that the phrase curve values at the start and end of

the phrase equal the values of the raw pitch curve at those time
points. Because of continuity of the phrase curve, and because
the times of the inflection points are known,n − 1 parameters
are needed to describe the interconnected line segments making
up the phrase curve. For the present study, the warping func-
tion has no constraint other than monotonicity. However, when
we consider more complex types of utterances, more constraints
may need to be applied to warping function.

3. Optimization : Parameters are estimated using the Nelder-
Mead simplex method [7] as implemented in the routine fmin-
search in MATLAB [8], using as error criterion the weighted
root mean squared deviation between predicted and observed
pitch contours; weights are given by the product of theget f0
[17] voicing flag and energy.

3. Experiment with Synthetic Curves

To test the pitch decomposition algorithm, we synthesized a set
of 75 declarativeF0 contours with single-peaked pitch accents,
and used the algorithm to extract phrase and the accent curves.

3.1. Materials

The pitch contours were generated using a simplified version
of the Bell Labs’ Linear Alignment model [10], called SLAM
(or the Simplified Linear Alignment Model). In this model,
the pitch curve is a summation of a phrase curve andn accent
curves. The phrase curve is created by interpolation between
three points: start of the phrase, start of the last foot, end of
the phrase. The accent curves are created by cosine interpola-
tion between the start, peak location, and end. Peak location is
a function of foot duration and the number of syllables in the
foot.

We created32 contours with two accent curves and43 with
three accent curves. For every contour, the accent curves were
asymmetric in shape, and non-phrase-final curves overlapped
with the next curve. The following curves were generated. (i)
Two-accent case. Accent curve heights were set at50 Hz and
75 Hz, slopes for the pre-nuclear segment of the phrase curves
were set at 50 Hz/s and 70 Hz/s, the initial boundary tone was
always110 Hz, and successive accent curve overlap was set at
10% and20%. An example is shown in Figure 1. (ii)Three-
accent case. Similar to the two-accent case, except that accent
curve heights were set at50 Hz, 75 Hz and95 Hz and that only
a random subset of all combinations (43 out of 432) was used.
An example is shown in Figure 2.

Overlapping accent curves illustrate a key strength of the
proposed pitch decomposition algorithm over other decompo-
sition approaches. In afiltering method[14, 9], the assump-
tion must be made that the phrase curve is completely smooth
with no inflection points. A weakness of thewavelet-based ap-
proach[12] is that it only performs a partial decomposition: it
returns the phrase curve and a summation of the accent and seg-
mental perturbation curves.

3.2. Results

The accuracy with which the algorithm estimates component
curves was measured by the Root Mean Squared Error (RMSE)
between the estimated and the original component curves for
the 75 instances. The results (Table 1) show an encouraging
goodness-of-fit.
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Figure 1: Example of a two-accent syntheticF0 curve used to
test the decomposition algorithm.
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Figure 2: Example of a three-accent syntheticF0 curve used to
test the decomposition algorithm.

4. Perceptual Study

A perceptual study was conducted to test the claim of the Multi-
Level Unit Sequence Synthesis method that it should produce
better quality intonation than that produced by synthetic target
pitch contours (e.g., diphone synthesis) or synthesis based on
raw concatenation of pitch contour fragments (e.g., [20]).

4.1. Textual Materials

The recordings used for the pilot study were elicited from one
male speaker. Each utterance set had the following format,
wherex denotes utterance set number.x = 1, 2, ..., 13:

1. ax: Leenaa Roya.
2. bx: Leenab Wellerb andAnnb Royb.
3. cx: Leenac Wellerc and Annc Royc.

The speaker was instructed to put a relatively higher em-
phasis on the highlighted word, and to pronounce thebx andcx

items in a ‘list-like’ manner, in order to elicit variability in pitch
range more typical of natural speech used in unit selection syn-
thesis than of the stilted speech in diphone synthesis. A total of
39 utterances were recorded.

2-accent 3-accent
contours contours

Phrase 4.16 9.11
Accent-1 3.99 4.58
Accent-2 2.21 6.76
Accent-3 N/A 3.20

Table 1: Performance of the decomposition algorithm (quanti-
ties in Hz). Accent-i is thei-th accent curve in the phrase.

4.2. Stimulus Generation

Every utterance was manually segmented into left-headed feet
using Wavesurfer [15]. Pitch curves were extracted (at 10 ms
interval) using ESPSget f0 utility [17]; based on [19], we
removed high-frequency noise using the Savitzky-Golay [16]
smoothing filter of order3 and length5.

As an accent curve template, we use a Gaussian curve. We
note that the exact shape of the template is not critical as long
as it is single-peaked and has initial and final values of 0, be-
cause the unconstrained time warping procedure renders differ-
ent templates with these features equivalent. Given these inputs,
the algorithm decomposes every natural pitch curve into the es-
timated phrase curve and the estimated accent curves.An exam-
ple of the natural pitch curve decomposition is given in Figure3.
The average warping function obtained by the decomposition of
the utterance setbx is shown in Figure4. Note that for the first
three accent curves, the average warping function goes beyond
100% of the associated foot duration, indicating that each of
the first three accent curves overlaps with the following accent
curve. In each of the13 utterance sets (shown in Section 4.1),

Figure 3: Decomposition of a natural pitch curve: The dashed
arrows indicate the peaks detected by the algorithm. The x-axis
is time in 10 ms intervals, and the y-axis is in frequency in Hz.

utteranceax is considered the target utterance. So, for every set,
utteranceax is resynthesized five times using STRAIGHT [4];
each time with a different pitch contour. Duration mapping be-
tween the generatedF0 and the originalF0 was done at the foot
level. The five different pitch contours are as follows:
1. OriginalF0 (ORIG): The first target pitch curve is simply the
pitch curve extracted using ESPS.
2. RawF0 concatenated (CONCAT): For each utterance set,
rawF0 will be extracted from the first and the last units of utter-
ancebx (becauseLeenaa andLeenab are in the same prosodic
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Figure 4: Average warping function related to the decomposi-
tion of utterance setbx

context, as areRoya andRoyb) and concatenated to generate
the second target pitch contour. We tried to match the peaks of
the concatenatedF0 to the peaks of the naturalF0 of the target
utterance by multiplying each of the units by a height factor.
However, doing so sometimes resulted in more drastic jumps at
the unit boundaries, as shown in Figure5; we therefore decided
not to perform the peak-matching.
3. SLAM F0 (SYNTHETIC): We use the SLAM model to gen-
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Figure 5: Peak matching concatenated pitch curves can make
the pitch mismatches at unit boundaries more drastic

erate the third target pitch contour by means of the OGI version
of the Festival Speech Synthesis system [2]. The phrase curve
height parameters, as well as the accent height parameters, are
set to mimic the actual speaker’s average phrase start, phrase
end, and peak heights closely.
4. ‘Semi-natural’F0 with accent curves from the right prosodic
context (DECOM1): For every utterance set, the accent curves
associated with the first and the last units ofbx are obtained.
The obtained accent curves are scaled by a suitable height fac-
tor, and added to a synthetic phrase curve to generate the fourth

targetF0 curve. The phrase curve was generated to approxi-
mately mimic the average phrase curve obtained by decompo-
sition ofax.
5. ‘Semi-natural’F0 with accent curves from the wrong prosodic
context (DECOM2): In the previous method ofF0 generation,
we took care to find accent curves from the same prosodic con-
text as the target accent curves. However, we may not be able
to find accent curves in the corpus that match the needed tar-
get accent curves completely in terms of prosodic context. To
examine the effects of using such accent curves, for every utter-
ance set, we use the accent curves associated with the first and
last units ofcx to produce the target contour. Note that the rela-
tive emphasis onLeenac andRoyc are the reverse of the rela-
tive emphasis onLeenaa andRoya, respectively. However, the
position in phrase and the number of syllables for the matched
pairs, (Leenaa, Leenac) and (Roya, Royc), are identical. We
conjecture that given the matching position in phrase and the
identical number of syllables, the effect of emphasis translates
to only a difference in the height factor of the accent curve. So,
the accent curves were appropriately scaled and added to a syn-
thetic phrase curve to generate the fifth target contour.

4.3. Listening Protocol

We created13 utterance sets comprising5 target pitch contours
applied to the same utterance. The ordering of the13 sets was
randomized, and within each set, the order of presentation of the
5 target utterances was randomized as well. The listening test
was presented to six listeners using a CGI-based script (WW-
Stim [22]). The five target utterances of every randomized set
were presented on the same page; each set on a different page.
The test was performed on one computer with a M-Audio Duo
USB audio interface and a high quality AKG headset. The lis-
teners were asked to listen to each of the65 target utterances,
one at a time, and rate the naturalness of the pitch on a five-
point scale. Of the six listeners, four were students from our
university and two were staff members. All listeners are fluent
in spoken English, and four are involved in speech research.

4.4. Results

The data form a65 stimuli× 6 listeners score matrixS. We first
performed plannedt-tests for three key predictions, according
to which we expect DECOM1 to be better than CONCAT, SYN-
THETIC, and DECOM2. All t-tests were significant at0.025,
with t values of 4.62, 4.70, and 3.58. Since all six listeners
having results in the predicted direction, also sign tests were
significant (p= 0.016).

Second, to obtain a picture of the combined scores cor-
rected for some subjects using a different range of ratings or not
being in line with the majority of subjects, we performed a prin-
cipal components analysis (PCA) on S after its columns were
transformed into z-scores. This analysis produces a weighted
combination of the ratings, assigning larger weights to main-
stream listeners, and eliminating any differences in individual
usage of the rating scales due to thez-transformation. The re-
sulting averages are shown in Figure7.

From Figure7, we conclude that methodDECOM1 pre-
dicts more natural soundingF0 compared to methods SYN-
THETIC, CONCAT andDECOM2. We hypothesize that the
superior performance ofDECOM1 over the other methods can
be attributed to the following key differences:(i) The key differ-
ence betweenDECOM1 and SYNTHETIC is thatDECOM1

generates pitch curves containing details of natural pitch, whereas
SYNTHETIC does not. An example illustrating this difference
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Figure 6: Main differences inF0 prediction between
DECOM1, and each of SYNTHETIC, CONCAT and
DECOM2

is shown in Figure6 (set a). This difference arises from the fact
thatDECOM1 uses component accent curves extracted from
natural pitch curves to generate targetF0 curves, whereas SYN-
THETIC generates targetF0 curves using statistically-based rules.
(ii) The main difference betweenDECOM1 and CONCAT is
thatDECOM1 alwaysgenerates continuousF0 curves whereas
CONCAT sometimes generatesF0 curves that have audible pitch
discontinuities, as shown in Figure6 (set b). In the illustrated
example, the discontinuity between the two parts of the pitch
predicted by CONCAT occurred in spite of each of the pieces
being chosen from appropriate prosodic contexts. Though cho-
sen from appropriate contexts, the two parts were chosen from
a list-type utterance. List-type utterances are a type of expres-
sive speech, and hence have extreme variations in pitch. Thus,
even two pitch pieces chosen from the same list utterance and
concatenated together result in a large pitch jump at the bound-
ary between the units. One might argue that this discontinu-
ity can be smoothed, however most smoothing techniques will
cause the natural details inherent in each of the pitch pieces to
be lost in the smoothed pitch curve. Since our goal is to preserve
the details of natural pitch, we have refrained from performing
such smoothing. Another intuitive argument may be that the
pitch pieces should be extracted from less expressive speech.
Doing so will perhaps result in no (or small) pitch discontinu-
ities, however, the resultant pitch curve will also be less expres-
sive. (iii) Finally, the main difference betweenDECOM1 and
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Figure 7: Means and standard deviations of different methods
of F0 generation: The bar graph shows the means and the line
above each bar indicates the standard deviation.

DECOM2 is that since in methodDECOM2, the component
accent curves are extracted from sub-optimal prosodic contexts,
the resultant pitch curve might not match the target pitch curve
as well as the pitch curve generated by methodDECOM1,
which is composed of accent curves extracted from the optimal
prosodic context. This key difference is illustrated in Figure6
(set c).

5. Conclusion and Future Work

The core goal of this paper was to describe an algorithm for
decomposition of pitch contours into accent curves and phrase
curves while making minimal assumptions about the shapes of
the underlying curves. Two assumptions were made. One is that
the accent curves are single-peaked, and that their start and end
values are zero. This assumption in effect says that the model
can only be applied to declaratives with high pitch accents. The
second assumption is that the phrase curve is piece-wise linear,
with the inflection points occurring at foot boundaries. Clearly,
this assumption is at most approximately valid.

The evaluation on synthetic data showed that the algorithm
can recover the underlying component curves with good accu-
racy. Evidence for robustness is provided by the fact that the
synthetic accent curves (asymmetric curves cobbled together
via cosine interpolation) were different in shape from the Gaussian
templates.

The perceptual evaluation showed that the Multi-Level Unit
Sequence Synthesis method is a promising alternative to syn-
thesis approaches that use synthetic pitch target curves, and to
synthesis approaches that generate target pitch curves by con-
catenation of raw pitch curves. Comparing the superpositional
method with raw pitch concatenation, we can conclude that
the continuity of the target pitch contour provided by the new
method clearly outweighed any pitch modification distortion.

Future work on the decomposition algorithm includes, first
of all, the further decomposition of the accent curves as esti-
mated by the proposed method into “true” accent curves and
segmental perturbation curves – these two are combined in the
proposed estimation procedure. Second, the algorithm has to be
extended to process speech with non-sonorants (in the current
paper, all-sonorant text was used). Third, many other pitch ac-
cent shapes need to be explored. Fourth, better approximation
of the phrase curve shapes.
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