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Abstract
The performance of the Monnin-Grosjean (MG) algorithm for
predicting prosodic structure is compared with that of a system
of dependency-grammar-based local markers (the DG system).
Analyses of Brazilian Portuguese paragraphs read by five spea-
kers reveal that the MG algorithm performs as well as the DG
system when V-to-V normalised durations at word and phrase
stress boundaries are used as indexes of prominence. These two
procedures, however, have proved unsuccessful in dealing with
individual variability. To overcome such a limitation, a dyna-
mical model is proposed. By coupling syntactic and regula-
rity constraints the main advantage of the model is the plausible
simulation of speaker variability. Seven simulations were ca-
ried out by changing three model parameters: coupling strength,
conditional probability of phrase stress placement, and V-to-V
duration mean.

1. Introduction
The prosody-syntax interface has been a theme of great inte-
rest in the scientific community, as illustrated by the proposals
of several algorithms that explain part of the variance of both
prosodic constituency and prominence [1, 6, 8, 9]. All these
algorithms have been integrated into text-to-speech synthesis
systems in order to automatically generate the prosodic infor-
mation necessary to produce a natural-sounding speech. Th-
ree depths of syntactic analysis prior to the obtention of pro-
sodic structure can be identified in these models. Some use a
comprehensive parser to analyse the sentences [9], others use
a partial syntactic analysis [1], and the last ones use a minimal
amount of syntactic information [6, 8]. All the algorithms use
a set of heuristic rules to obtain prosodic constituents of simi-
lar size. This size can be measured in units of some linguis-
tic constituent, such as the phonological phrase or the syllable.
Depending on the sentence complexity, the obtained prosodic
structure is often flatter and more simmetric than the syntactic
one. This very fact questions the need of comprehensive parsers
for prosody generation.

Within a psycholinguistic framework, the work by Gee and
Grosjean [5] is often cited for the high correlation between
predicted and realised structures that their φ algorithm produ-
ces [1, 12]. Less well known is the Monnin-Grosjean algorithm
(henceforth, the MG algorithm) adapted from the φ one to pre-
dict the performance structure of French sentences [7].

Since the latter considers the fact that French is a right-
headed language at the stress group domain, it could be used to
predict prosodic structure in other right-headed languages, such
as Brazilian Portuguese (henceforth BP). Here “stress group”
refers to a unit delimited by two consecutive phrase stresses.
Phrase stress is used here, according to a speech production cri-
terion, as the place of one or more prominent units along the

utterance. In BP, it corresponds to the position of the culmina-
tion of a quasi-monotonical increase of V-to-V (from a vowel
onset to the immediately next one) durations rightwards, fol-
lowed by a duration reset [3]. These peaks of duration include
weak prosodic boundaries which are seldom perceived by lis-
teners in perception tests, since perceived salience depends on
others factors such as pitch accent.

Three procedures for predicting prosodic structure are pre-
sented and contrasted in the next section. Two of them are retai-
ned for comparison and the reasons for rejecting a first choice
is explained. The unability of the two retained procedures to
cope with prosodic individual variability guided us to propose
a dynamical model of phrase stress placement and prominence
generation in the third section.

2. Comparing two procedures for
predicting prosodic structure

Recently, Watson and Gibson [12] have compared the perfor-
mance of three algorithms for attributing intonational bounda-
ries in English with their own, the Left/Right Constituent Boun-
dary model (the LRB model). The LRB model predicts that the
likelihood of an intonational boundary between two words in-
creases with constituent size at both sides of the boundary.

The performance of their algorithm was compared with
the other three by computing the squared correlation between
the predicted weights and the probability of intonational boun-
dary placement. The latter was estimated from the labelling
of complex sentences using a subset of the ToBI break index
system [10]: indexes 1, 2, and 3-4. Their model performed as
well as two of the algorithms (including Gee and Grosjean’s)
and better than all three algorithms, for more complex senten-
ces. Even though the sentences evaluated were produced by
the interaction of 37 pairs of subjects, their model predicted a
single structure for each sentence, and, therefore, it was una-
ble to cope with individual prosodic variability. Furthermore,
when applied to BP, their model is unable to predict two dis-
tinct prosodic bracketings to cope with sentences with identi-
cal syntactic structures but varied number of syllables. The
following sentences illustrate such a limitation of their model
(verb in bold face): [A moça canta] [divinamente bem] (The
girl sings amazingly well), and [A afinadı́ssima moça] [canta
divinamente bem] (The in-tune girl sings amazingly well). As
stress groups with similar size tend to be implemented by speak-
ers, in the first sentence - but not in the second -, the verb is in-
cluded in the first stress group. Due to the strong dependency of
the LRB model on syntactic constituency, it is unable to explain
this common prosodic segmentation. The illustration also sug-
gests that the verb in BP oscillates in attracting/repelling phrase
stress. Prominence is expected then to be random for this gram-
matical category .



Since the MG algorithm is able to adequately predict the
prosodic bracketing of the two sentences illustrated above,
a comparison of this algorithm with a dependency-grammar-
based system of markers (the DG-based system) is made here.

2.1. The MG algorithm

Monnin and Grosjean [7] proposed the MG algorithm for pre-
dicting the prosodic structure of French sentences. The algo-
rithm carries out this prediction into six steps: (1) identification
of the prosodic nuclei; (2) formation of basic prosodic con-
stituents by connecting remaining words to their nuclei; (3)
indexation of the basic prosodic constituents; (4) formation
of higher prosodic constituents; (5) indexation of the higher
prosodic constituents; (6) rhythmic adjustments to achieve con-
stituent size equalisation, where size is measured in number of
syllables. The last step explicitly states that the verb can group
with a left subject depending on size constraints.

The prosodic structure predicted by the MG algorithm is as-
sessed by computing the correlation between the predicted in-
dexes of prosodic boundary strength between each pair of words
in a set of sentences, and the duration of the final-word vowels
added to a silent pause, as applicable. These durations are taken
from the average duration of the reading of the sentences by
eight subjects at a spontaneous speech rate. The correlation co-
efficient obtained for a set of nine simple sentences was 94 %,
which signals the appropriateness of the MG algorithm for pre-
dicting the prosodic structure of simple sentences in French.

Since there is only one predicted prosodic structure for each
sentence, and the realised prosodic structure are averaged across
subjects, the algorithm is unable to deal with prosodic variabil-
ity. On the other hand, the steps are relatively local by operating
around prosodic nuclei.

2.2. The DG-based system

Bailly [2] proposed a set of markers based on local dependency
relations of a surface tree, obtained according to the principles
of Tesnière’s work [11]. The set considered four kinds of rela-
tion between contiguous terms in a sentence: (1) right depen-
dency (RD), when the dependent is to the right of the regent, as
in “a casa (RD) verde” (the-house-green); (2) left dependency
(LD), when the dependent is to the left of the regent, as in “a
bela (LD) mulher” (the-beautiful-woman); (3) interdependency
(IT), when the contiguous terms modify the same regent, as in
“o belo, (IT) gentil cão” (the-beautiful-nice-dog), and (4) in-
dependency (ID), when the contiguous terms are not directly
related, as well in “a quotação do dólar (ID) aumentou” (the-
quotation-of-the-dollar-increased). This four-level set is com-
bined with two levels of strength. From these principles he pro-
posed a set of six markers, since the left and right dependencies
can be strong or weak, depending whether the regent is the verb
or not, respectively.

In the present work, this set is increased to eleven markers,
extending the two-level strength to the other types of relation
and including three markers to deal with more complex syn-
tactic relations. The three additional markers are COORD (at
coordinated clauses’ boundary), DSUB (at the beggining of a
subordinated clause, when the conjunction immediately follows
the regent), IDSUB (at the beggining of a subordinated clause,
when the regent is not contiguous to the conjunction). This ex-
tended system is called the DG-based system.

Two corpora of BP were annotated with the DG-based
markers in order to assess their appropriateness in predicting
prosodic structure. For doing so, the set of eleven markers was

associated with natural numbers ranging from 1 to 11 in increas-
ing order: LD, IT, RD, SRD, SLD, SIT, ID, DSUB, IDSUB,
COORD, SID (where strong markers begin with ‘S’). The Lo-
bato corpus was read by five male speakers from two different
dialectal regions (São Paulo and Brası́lia), whereas the Pantanal
corpus was read by one of the speakers from Brası́lia. The Lo-
bato corpus is the reading of a two-paragraph-long chunk of a
story-telling text for children (110 words). The Pantanal corpus
is the reading of a 353-word report on the Brazilian Pantanal.

2.3. Comparing the MG algorithm and the DG-based sys-
tem

In order to compare the performance of the MG algorithm in
predicting prosodic structure with that of the DG-based sys-
tem, the correlation coefficient between predicted and realised
prosodic strengths at each word boundary was computed. For
the MG algorithm, prosodic strengths were predicted by apply-
ing the six steps above. As for the DG-based system, only
the numbers associated with the local syntactic markers were
used ar each phonological word boundary. A global syntactic
set of indexes of strength, served as a control base of compar-
ison. These global syntactic indexes were obtained for each
phonological word boundary from a classical surface syntactic
tree, according to Monnin and Grosjean’s directions [7]. This is
made by counting the number of non-terminal nodes dominated
by the node that separates the constituents at both sides of the
boundary and including the dominant node itself.

The realised prosodic strengths were obtained by using a
normalised duration, instead of Monnin-Grosjean’s raw dura-
tions. The reason for that is to avoid the effect of intrinsic
vowel duration. This normalised duration, called the phono-
logical word z − score, is the highest smoothed z − score [4]
of the durations of the V-to-V units of a chunk of the phonolog-
ical word preceding the boundary. This chunk extends from the
lexically stressed V-to-V unit to the possible post-stressed V-to-
V units. Smoothing is obtained by applying a 5-point weighted
average to raw z − scores. Each phonological word boundary
strength is then specified by a real number signalling the degree
of lengthening/shortening of the boundary. Results showing
correlation coefficients between the three methods of prediction
and the phonological word z − scores are given is table 1 for
three BP male speakers from São Paulo state (AP, AC, and DP).
All three speakers read the Lobato corpus at three self-chosen
speech rates, but only the statistically different rates are shown.
In order to evaluate the effect of restricting the computation to
words bearing phrase stress, correlation coefficients for these
positions only are given between parentheses. Phrase stress po-
sitions correspond to the maxima of smoothed z−scores of V-
to-V durations along the utterance. It is worth noting that both
the MG algorithm and the DG-based system perform similarly,
even though the latter one is a purely syntactic-based system.
Since normalised durations of words bearing phrase stress are
more reliable indexes of prosodic strength, all correlation coef-
ficients are higher in that condition. The maximum correlation
of 51 %, much smaller than the 94 % found for French [7], is
explained by the use of a story-telling text that contains many
complex sentences and that is pronounced in a more natural
way. This correlation is also carried out with more detailed data
than the perceptual indexes used in [12]. Observe also that the
global syntactic system achieves correlations inferior to 30 %
for two speakers, except AC, which could indicate that some
speakers rely more on syntax when speaking.

Some minor differences for distinct speech rates may signal



Table 1: Correlation coefficients between predicted prosodic
structure from three methods (global syntactic indexes, GS; the
DG-based system, DG; and the Monnin-Grosjean algorithm,
MG), and realised prosodic structure. In all cases, p < 0.05.
Values in bold face signals the highest value in each row.

Speakers (rate)
AP GS DG MG

(slow) 28 (59) 46 (64) 45 (61)
(normal) 28 (47) 45 (61) 41 (56)

AC
(normal) 49 (53) 49 (54) 42 (54)

(fast) 36 (50) 42 (55) 33 (60)
DP

(normal) 27 (54) 26 (35) 51 (71)

Figure 1: Smoothed z−score evolution (y-axis) of the utterance
“Sendo muito apreciada a sorte de comer fogo.” for speaker

AC. Slow and normal rates are statistically indistinct.

differences in prosodic structuring, as it is confirmed by observ-
ing the V-to-V duration patterning across rates. An illustration
is given in Fig. 1, where the final sentence of the Lobato corpus,
“Sendo muito apreciada a sorte de comer fogo.”, is realised as
two (slow and normal) or one stress group (fast), as speech rate
increases. Note the absence of the medial duration peak for the
fast rate. These intra- and inter-subject differences of prosodic
structuring have motivated the proposal of a model able to cope
with prosodic variability.

3. A dynamical model for prosodic
structure generation

The model proposed here is couched on dynamical systems the-
ory. It is part of a dynamical model of speech rhythm production
that integrates two coupled oscillators able to generate dura-
tional patterns along stress groups in BP [3]. The present work
completes the rhythm model by including a model for automat-
ically attributing phrase stress position and prominence along
the sentences. However, until the development of a DG-based
parser is completed, it will require the manual introduction of
the DG-based markers.

The dynamical model has two coupled probabilistic compo-
nents, a syntactic component and a regularity-constraint com-
ponent (see eq. 1). The syntactic component is realised by
computing the conditional probability that a phonological word
bears the phrase stress, given a specific DG-marker, to its right,
p(ps/m). The regularity component implements the produc-
tion constraints on stress group size similarity by computing

the conditional probability that a phonological word bears the
phrase stress, given n V-to-V units (nV V ) following the assign-
ment of a previous phrase stress, p(ps/nV V )). Both compo-
nents are linearly combined by using a coupling strength factor,
rp, in order to compute the likelihood of phrase stress, l(ps), at
phonological word boundary.

l(ps) = logit[p(ps/m)].rp+(1−rp).logit[p(ps/nV V )] (1)

The logit values (logit(p) = ln(p/1− p)) of the probabilities
are computed in order to obtain a likelihood extending outside
the interval [0-1]. This is necessary because the smoothed V-
to-V duration z − scores are not restricted to that interval. In
the model equation there are three sources of intra- and inter-
speaker variability: the two conditional probabilities and the
coupling strength between the components. As to the latter
(0 6 rp 6 1), if rp is greater than 0.5, the syntactic compo-
nent dominates the regularity one. If its value is less than 0.5,
the opposite trend is realised. This can simulate speakers that
rely more on syntax than on regularity constraints when speak-
ing, as speaker AC.

Both conditional probabilities were estimated from the Lo-
bato corpus in a pilot experiment for four speakers (AP, AC,
DP, and PA). As significance was achieved for a few markers,
in the case of the syntactic conditional probability, the computa-
tion was achieved by using the Pantanal corpus with speaker PA
from Brası́lia. In order to assess his compatibility with the other
speakers, the conditional probabilities from both corpora were
compared for this speaker and revealed that the same trends are
found for the four speakers. The regularity component prob-
ability was implemented by a lognormal distribution, since it
was the best fit for all four speakers. The distribution allowed
to specify this component by two parameters, log-transformed
mean and standard-deviation, for all speakers: (1.9, 0.4) (ap-
proximately 8 and 3 V-to-V units per stress group, respectively).

The conditional probabilities for the syntactic component
are given in table 2 for five markers. The values for the other
six were used in the simulations with the model, but were not
significant (DSUB, IDSUB, and COORD gave the value of 1,
for instance). Significance in table 2 refers to statistical differ-
ences between conditional probability and a priori probability
of phrase stress (the latter corresponds to the random case). This
is done in order to evaluate the attraction or repulsion of specific
markers to/from phrase stress. The repulsion of the RD marker

Table 2: Conditional probability of phrase stress given a spe-
cific DG-based marker, computed from the corpus Pantanal for
speaker PA. The p−values refer to significance from a priori
probability of phrase stress p(ps) = 0.48.

marker n p(ps/m) p <
RD 66 0.26 0.002

SRD 24 0.30 ns
SID 34 0.86 0.0002
ID 17 0.76 0.03
IT 32 0.52 ns

from phrase stress (the conditional probability is lesser than the
a priori probability) indicates that this speaker (and the other
speakers, since the results were identical in this respect) rejects
to put a phrase stress between a noun and its complemetnt in a
nominal phrase, for instance. The stronger markers SID and ID,
on the other hand, attract phrase stress (0.86 and 0.76 are statis-
tically greater than 0.48), which means that sentence boundary



and the boundary between a complement and a verb, for in-
stance, are preferred places for assigning phrase stress. The ran-
dom behaviour of the SRD marker (between a verb and a right
dependent) suggests that verbs behave ramdomly with respect
to phrase stress attraction. This is confirmed by computing the
conditional probability of phrase stress given a grammatical cat-
egory in the same Pantanal corpus. This analysis revealed that
verbs are in fact indifferent to phrase stress (probability statisti-
cally indistinct from a priori one: 0.35), whereas nouns and ad-
jectives attract them (probabilities 0.53 and 0.60, respectively).

The dynamical model proceeds as following: (1) four in-
put parameters are introduced: a V-to-V mean duration specify-
ing speech rate, µVV; the two parameters specifying the condi-
tional probability of phrase stress given the extension from the
last assigned phrase stress (or the beginning of the sentence),
(µnVV,σnVV); the coupling strength rp; and the conditional
probabilities for the 11 DG-based markers; (2) a lookahead win-
dow in phonological words is computed from the ratio between
the mean value of stress group duration across the four speak-
ers (1300 ms), and the ratio between µVV and the averaged
number of V-to-V units per phonological word (3.5); (3) the
likelihood of phrase stress assignment at each lexically stressed
V-to-V unit within the current lookahead window is computed
from equation 1; (4) a phrase stress is assigned to the position
with the higher likelihood (this value is retained for computing
the correlation between simulated and realised prosodic struc-
tures). The model proceeds to step 3 until the sentence ends.

Seven simulations of the model for the Lobato corpus are
presented in table 3. They consider changes in all input parame-
ters except the syntactic conditional probabilities. Correlation

Table 3: Simulations of phrase stress assignment with the dy-
namical model. Lookahead (LA) and correlation coefficients
(R) between simulated and realised prosodic structures of spe-
cific speakers are given. See text for additional information.

µVV (µnVV,σnVV) rp LA R
300 (1.9,0.4) 0.7 2 58 (AP, slow)
300 (1.6,0.4) 0.8 2 58 (AP, slow)
300 (2.6,0.4) 0.5 2 67 (PA, normal)
225 (1.85,0.4) 0.6 3 65 (AP, slow)
225 (2.1,0.4) 0.6 3 55 (AP, slow)
150 (1.9,0.4) 0.9 4 49 (AP, slow)
150 (2.8,0.4) 0.9 4 46 (AP, slow)

coefficients are computed between realised phonological word
z − scores for four speakers, and the likelihoods estimated by
the model. Since the model predicts phrase stress position and
prominence, the values in table 3 should be compared to those
between parentheses in table 1, ranging from 54 to 71 %. The
highest correlation among the four speakers is given in table 3,
with the correspoonding speech rate (correlations for all speak-
ers and rates were greater than 45 %). Observe that, as the simu-
lated speech rate increases (by decreasing µVV), the extension
of the lookahead window increases, which ensures a smaller
number of assigned phrase stresses. The coupling strengths in
table 3 vary from 0.5 to 0.9, which means that a regularity con-
straint is necessary for predicting the prosodic structure. Even
though the correlations are statistically similar to those in ta-
bles 1 and 3, the dynamical model is able to cope with prosodic
variability by changing the degree of the syntactic component
influence, as well as by decreasing the number of attributed
phrase stresses as speech rate changes (achieved by the change

of the lookahead window size). The upper limit of about 70 %
for all correlations shown here strongly suggests that part of the
remaining variance is certainly due to semantic factors.

4. Summary
After assessing the performance of two algorithms for predict-
ing prosodic structure with data from BP text reading data, a
dynamical model for assigning phrase stress is proposed. The
model is able to deal with at least two sources of speaker vari-
ability: changes in phrase stress prominence and place due to
speech rate, and changes triggered by syntactic structuring.
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