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Abstract 

This paper presents results of the comparison between speech 

produced in silence and speech in noise, also known as 

Lombard speech. A temporal filtering algorithm was 

developed which successfully removes the ambient noise from 

recordings of Lombard speech by locating and subtracting a 

recording of the noise performed in the same environment. 

The filtering algorithm yields overall noise attenuation 

between 15 and 30 dB without distorting the speech signal like 

spectral filtering approaches. In the subsequent acoustic 

analyses we examined the effect of varying levels of noise on 

vowel formants, glottal spectra and intensity. For most vowels 

we found significant rises in F1 and F2, but little variation in 

formant bandwidth. The overall rise in intensity between silent 

and 80 dB babble noise conditions was found to be of 9 dB. 

With growing effort higher harmonics are boosted by up to 6 

dB whereas the average speech rate only drops by 5%. In 

Lombard speech the standard deviation of phone intensity is 

reduced. 

1. Introduction 

 

It is commonly known that humans in noisy environments 

adapt their manner of speaking. This adaptation not only 

concerns the loudness of speech, but also fundamental 

frequency, speech rate and spectral characteristics (for a 

summary see, for instance, [1]). The so-called 'Lombard' 

speech has been shown to be more intelligible than normal 

speech, and therefore raised the interest of researchers who 

aim at improving the quality of speech synthesizers. 

Furthermore, speech recognizers in a noisy environment have 

to deal with the properties of Lombard speech. Therefore 

suitable training corpora need to be developed. The current 

paper discusses a filtering approach designed to remove 

ambient noise from recordings of Lombard speech made in an 

anechoic chamber. Most current studies avoid the 

contamination of recordings of Lombard speech by presenting 

the noise to the subjects over headphones. Provided the 

headphones are closed type ones, the noise that the recording 

microphone will pick up is minimal. On the downside, this 

method requires that the talker's proprioception, that is, the 

sound of his own voice talking, and the acoustics of the room, 

are somehow simulated and also presented over the 

headphones. Besides, wearing closed type headphones for a 

longer period of time is tiresome and unnatural.  

Commonly denoising is performed in the frequency domain by 

estimating the spectrum of the noise during speech pauses and 

subsequent spectral subtraction. This works fairly well for 

noise types with constant spectral properties while babble 

noise is more difficult to remove. Furthermore the speech 

signal is degraded by this kind of technique.  

The great advantage of the lab condition is the fact that the 

properties of the contaminating noise are exactly known since 

it is presented to the listener from a recording. In a recent 

approach [2] the transfer function of the recording set-up is 

therefore estimated using white noise and a corresponding FIR 

filter is constructed. It requires that the talker be present in the 

room while the white calibration noise is recorded. On a two-

channel recording the original of the contaminating noise and 

the noise contaminated speech recorded in the anechoic room 

are stored. Subsequently the channel of the contaminating 

noise is passed through the FIR filter and its output subtracted 

from the speech signal. This method yields typical attenuation 

levels of 30 dB. However, it requires sophisticated channel 

estimation techniques and specialized DSP hardware. In the 

current study we therefore examined a simpler method based 

on direct noise subtraction in the time domain.  

 

2. Filtering Procedure 

 

As in [2] we assume that the recording set-up is highly linear, 

time-invariant and low in noise, and therefore its transfer 

function remains fairly constant.  A recording of the 

contaminating noise is performed while the talker is already 

present in the room. On subsequent takes, the talker starts 

speaking shortly after noise onset. After a set of recordings is 

completed, the initial noise-only recording (henceforth 'sample 

noise') is subtracted from the contaminated speech samples. To 

this effect, the sample noise must be precisely aligned with the 

speech recording. Therefore a search frame of 0.25 s is 

extracted shortly after the onset of the noise sample and 

searched for in the noise-contaminated speech file by 

determining the maximum cross-correlation between the 

search frame and subsequent frames of equal size from the 

speech file. Figure 1 shows an example of a cross-correlation 

function (CCF). The local maximum where the onset of the 

search frame was located in the speech file is clearly visible on 

the left hand side. In the right-hand third of the figure we see 

the onset of the speech signal marked by an overall increase in 

the CCF. This occasionally leads to wrong peak-picking and 

subsequent failure of the filtering method when the onset of 

the speech signal is located very closely after the beginning of 

the contaminating noise. 

The filtering procedure was implemented as a MATLAB 

program and yields typical attenuation levels of 20 and up to 

35 dB. We found that at a sampling rate of 48 kHz an 

alignment mismatch by only one sample to the left or right of 

the cross-correlation maximum causes a reduction of 

maximum attenuation by up to 10 dB. In theory the maximum 



alignment mismatch amounts to half a sampling period. In a 

series of preliminary tests we found a variation of maximum 

attenuation of about +/- 2 dB. More detailed figures will be 

presented in the following section.  
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Figure 1: Example of cross-correlation function 

(CCF) used for locating the babble noise in the 

recording. The local maximum on the left hand side 

marks the onset of the search frame in the recording.  

 

3. Speech Material 

The speech material used in this study consisted of 

phonetically balanced German [3] and Finnish sentences 

between six and twelve syllables long. These were produced 

by one native speaker of German and one of Finnish, 

respectively, in the sound-proof recording room at the 

Department of Speech Sciences, University of Helsinki at 48 

kHz/24 bit using an AKG C4000 condenser microphone 

connected to a Macintosh G5 via a Digidesign 002 Firewire 

interface. The microphone was located 20 cm from the talker's 

mouth. We tested four conditions: no background noise 

(henceforth referred to as 'normal'), and babble noise at 60, 

70, and 80 dB SPL at the location of the recording 

microphone, and performed three repetitions. We adjusted the 

recording level to accommodate the 80 dB condition and left 

it unchanged for all remaining ones. Every recording subset 

consisted of sixteen sentences. In conditions 60, 70 and 80 dB 

babble noise was played back over loudspeakers of type 

Genelec 1029A with all tone controls off placed in front of 

the talker.  The speakers were situated about 150 cm above 

ground and 40 cm off the wall about 100 cm apart. The 

distance to the talker's mouth was about 120 cm. In order to 

avoid adaptation the duration of the noise was limited to five 

seconds. At the first presentation in a set the noise signal was 

recorded alone, yielding the sample noise. Subsequently, with 

every following presentation of the noise the talker uttered 

one of the sentences. There was a pause of approximately five 

seconds between consecutive noise presentations.  

Figure 2 displays a speech sample in condition 80 dB 

before (top) and after (bottom) filtering, the noise attenuation 

in this case is 29.9 dB. In the top panel the five seconds of 

babble noise contaminating the utterance produced by the 

talker are clearly visible. As we used a cardioid characteristic 

with a typical rear attenuation of 20 dB and the loudspeakers 

were mounted in front of the talker the amplitude of the 

babble noise is relatively low at an SNR of approx. 15 dB.  

We observed that the noise attenuation depended on the 

noise condition and the position of an utterance in a set. For 

60, 70 and 80 dB we yielded an utterance-wise mean 

attenuation of 17.4, 21.2 and 21.6 dB, respectively. In the case 

of 80 dB, for instance, the attenuation dropped from initial 

values of over 30 dB for the first utterances in a set to barely 

20 dB for the last ones. These figures compare to those 

presented in [2]. Here it was observed that minimal 

displacements of the talker and even breathing caused 

changes in the transfer function of the sound-proof booth and 

therefore reductions in the maximum attenuation as the 

recording session progressed. It is more difficult to explain 

why the mean attenuation in the 60 dB condition is 

considerably lower than in the 70 and 80 dB conditions. We 

assume, however, that as the energy of the contaminating 

noise becomes smaller, random factors such as quantization 

noise and thermal noise which differ between the sample 

noise and the noise contaminated speech recording set limits 

to the noise subtraction method. 

Time (s)
0 5

-0.5

0.5

0

0 1 2 3 4 5
-0.5

-0.25

0

0.25

0.5

Time (s)
0 5

-0.5

0.5

0

0 1 2 3 4 5
-0.5

-0.25

0

0.25

0.5

 

Figure 2: Noise-contaminated speech sample before 

and after filtering, condition 80 dB. In order to avoid 

listener adaptation, babble noise was presented for 

five seconds only. 

 

 

In all cases examined, however, the noise reduction was 

sufficiently effective to carry out subsequent acoustic 

analyses, and the contaminating noise became practically 

inaudible. Furthermore, the speech signal yielded was clear 

and unaffected by the filtering procedure. 

 

4. Acoustic Analysis 

 

After filtering, speech samples were down-sampled to 16 

kHz, annotated by forced alignment on the phone level and 

labels manually corrected. We determined formant 

frequencies and bandwidths at vowel centers using 

Wavesurfer [5], intensity contours as well as fundamental 

frequency contours at a step of 10 ms using Praat [6] default 

settings. The data was inspected and if necessary corrected.  

Table 1 lists mean F1 and F2 values for a set of German 

monophthong vowels. As can be seen, F1 increases 



significantly as the noise level rises. F2 increases slightly for 

most of the vowels, but the picture is not consistent.  

Table 1: Mean formant frequencies calculated for 

monophthong German vowels. 

Phone F1/F2 

[Hz] 

normal 

F1/F2 

[Hz] 

60 dB 

F1/F2 

[Hz] 

70 dB 

F1/F2 

[Hz] 

80 dB 

[2:] 385/1511 406/1440 412/1480 444/1353 

[9] 424/1398 427/1432 427/1581 465/1602 

[a] 571/1286 597/1304 627/1325 674/1370 

[a:] 664/1187 675/1197 727/1224 776/1266 

[e:] 398/1854 405/1908 411/1963 454/1978 

[E] 477/1695 481/1707 514/1714 556/1759 

[i:] 318/2045 327/2043 336/2055 332/2096 

[I] 369/1716 376/1674 406/1784 443/1772 

[o:] 397/1084 404/1073 420/1127 471/1225 

[O] 518/1034 545/1013 570/1072 609/1070 

[u:] 331/943 345/959 364/1036 407/1120 

[U] 442/1046 440/1075 486/1113 510/1023 

[y:] 320/1679 339/1633 366/1575 332/1577 

[Y] 390/1445 418/1453 439/1449 450/1435 

The formant bandwidth measurements yield differences 

between the four different conditions as can be seen in Table 

2, but the mean bandwidths do not show any consistent 

tendency with respect to the noise condition. In particular we 

do not see any consistent reduction in bandwidth under 

Lombard conditions as reported in [7], for instance. Similar 

results can be seen in Table 3 for the Finnish vowels. Figure 3 

shows how the vowel plane is shifted under Lombard 

conditions, especially in the case of the German speaker. 

  

Table 2: Mean formant bandwidths calculated for a 

number of monophthong German vowels. 

 

Phone B1/B2 

[Hz] 

normal 

B1/B2 

[Hz] 

60 dB 

B1/B2 

[Hz] 

70 dB 

B1/B2 

[Hz] 

80 dB 

[a:] 185/98 160/85 164/78 270/119 

[e:] 76/156 86/164 94/136 123/139 

[o:] 74/132 66/164 72/106 57/105 

[u:] 87/174 83/153 93/165 92/144 

 

Analysis of intensity contours yields overall rises by 1.45, 

4.85 and 8.85 dB for conditions 60, 70 and 80 dB, 

respectively, as compared to normal speech. If we only 

consider the intensity in the middle of each segment, the 

figures are 2.51, 6.19, and 10.24 dB, respectively. This rise 

concerns vowels (2.25, 6.03, 10.41 dB) and consonants (2.82, 

6.07, 10.01 dB) almost equally. As the mean intensity rises, 

the standard deviation becomes smaller, from 5.37 dB in the 

case of vowels in normal condition to 3.56 dB in condition 80 

dB. We also observe that the usual intensity difference 

between lax and tense vowel types ([2:]/[9], [E]/[e]:, [I]/[i:], 

[O]/[o:], [U]/[u:], [Y]/[y:]) is leveled.  

In order to determine how the spectrum of the glottal 

source is affected by the Lombard condition we inversely 

filtered all vowel segments (LPC of order 16) and pitch-

normalized the resulting residual signal to 160 Hz using 

PSOLA techniques within Praat. The resulting averaged 

spectra for the four conditions can be seen in Figure 4. As can 

be seen, as overall vocal effort increases from the normal 

condition to 80 dB higher harmonics are boosted up to 5 dB 

compared to the fundamental. 

Table 3: Mean formant frequencies calculated for 

monophthong Finnish vowels. 

Phone F1/F2 

[Hz] 

normal 

F1/F2 

[Hz] 

60 dB 

F1/F2 

[Hz] 

70 dB 

F1/F2 

[Hz] 

80 dB 

[a] 640/1306 652/1298 679/1296 699/1323 

[ä] 647/1533 651/1516 660/1533 675/1564 

[e] 459/1727 490/1718 497/1738 513/1794 

[i] 365/1901 391/1850 392/1877 403/1918 

[o] 473/1107 484/1100 500/1130 524/1143 

[ö] 499/1449 493/1443 493/1477 530/1506 

[u] 355/859 371/848 388/920 399/897 

[y] 330/1755 353/1702 376/1713 381/1743 
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Figure 3: Formant chart of German (top) and Finnish (bottom) vowels. 
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Figure 4: Spectra of pitch-normalized LP-residuals for normal        

speech and babble speech and babble noise at 60, 70 and 80 dB                                               

(from bottom to top). 

 

The fundamental frequency contours produced by the 

German speaker were parameterized using the Fujisaki model 

[8] maximally assigning each accented syllable one accent 

command as outlined in [9]. Figure 5 displays two examples 

of analysis: Utterances of the sentence "Am blauen Himmel 

ziehen die Wolken." - "The clouds are drifting in the blue 

sky." are shown in conditions normal (top) and 80 dB noise 

(bottom). As can be seen, Lombard speech is characterized by 

increased accent command amplitudes Aa and also increased 

phrase command amplitudes Ap. Furthermore, the last 

accented syllable [vOl] carries a high tone in 80 dB as 

compared to a low tone in the normal condition requiring an 

additional accent command. Table 4 displays means and 

standard deviations for Aa and Ap for all four conditions. 

Generally speaking, rising noise levels are accompanied by 

stronger resets of the declination line as captured by Ap and 

higher accent prominence as captured by Aa. The total 

number of accent commands assigned rises from 170 under 

normal condition to 200 in 80 dB, mostly because of the 

sentence-final accents becoming associated with high tones.   

 

Table 4: Means and standard deviations of accent 

command amplitude Aa and phrase command magnitude Ap 

for all four conditions. 

 

 mean/s.d. 

normal 

mean/s.d. 

60 dB 

mean/s.d. 

70 dB 

mean/s.d. 

80 dB 

Aa .34/.15 .38/.15 .39/.15 .45/.17 

Ap .44/.13 .45/.12 .57/.10 .69/.16 

5. Discussion and Conclusions 

The present study introduced a simple filtering method for 

noise-contaminated Lombard speech. Its main advantage is 

that talkers do not have to wear headphones during recording, 

impeding their proprioception. By pre-recording and 

subsequently locating and subtracting the noise, attenuation 

levels of up to 30 dB can be yielded. The method was tested 

on recordings of phonetically balanced sentences by one 

German and one Finnish speaker and under conditions of 

babble noise values of 60, 70 and 80 dB. The filtered speech 

samples were clear enough to perform acoustic analyses such 

as formant estimation and pitch extraction. Analysis results 

were in line with earlier studies of Lombard speech regarding 

f0, F1, F2 and intensity increases [1], but we could not 

observe a consistent reduction of formant bandwidth as 

reported in [7]. This result might be explained by the higher 

noise levels of 95 dB SPL used which causes subjects to 

actually shout. In future works we would like to examine the 

effect of adverse conditions on communicative strategies in a 

task-oriented dialog. 

 

 
Figure 5: Examples of Fujisaki model-based F0 contour analysis for 

normal (top) and Lombard speech (bottom). 
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