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Abstract 
This study evaluated the relative functions of pitch contours in 
infant-directed speech (IDS) by comparing it with adult- 
(ADS) and foreigner-directed speech (FDS). The shape of 
pitch contours derived from target words in speech samples 
was analysed using two novel algorithmic methods and a 
standard qualitative approach. Our findings indicate that IDS 
is very distinct from ADS and FDS, whilst the latter two 
exhibit a strong similarity to each other. These results suggest 
that pitch contours in IDS serve an emotional-attentional 
function rather than a linguistic function. 

1. Introduction 
Infant-directed speech (IDS) is characterised by the presence 
of hyperarticulation, increased pitch, exaggerated pitch 
contours, shorter utterances, longer pauses and high emotional 
affect [1-4]. These characteristics are well recognised and 
seem to be universal [5]. It is generally believed that IDS 
probably serves at least three different functions, but no 
consensus has been reached on their relative importance or 
independence. These three roles can be broadly divided into an 
attentional, an emotional and a linguistic function [5]. 
Previous research has investigated these roles by comparing 
IDS with non-emotional adult-directed speech (ADS) mainly 
in imaginary interactions with the help of scenarios [2]. 
However, ADS as a comparison to IDS is not sufficient as 
ADS lacks both the emotional and linguistic requirements of 
IDS. Recent research has therefore compared IDS with both 
emotional pet-directed speech (PDS) [4] and foreigner-
directed speech representing a linguistic comparison group [6]. 
Foreign-directed speech might present a particularly valid 
linguistic comparison group as speakers might modify their 
speech due to perceived comprehension difficulties (language 
and accent). Using these methods it was found that 
hyperarticulation (expansion of F1/F2 space) of vowels has a 
linguistic role [6] and that increased pitch has an emotional 
function [4].  

One area that was not explored in those studies was the 
nature and function of the exaggerated pitch contours in IDS 
compared to FDS. This was partially addressed in earlier 
studies with reference to tonal [7] and non-tonal languages [8]. 
Pitch range (an aspect of the pitch contour) was found to 
increase in FDS but not in IDS in the tonal language 
(Mandarin Chinese), whereas the opposite was apparent in the 
non-tonal language (English). Because pitch is used to convey 
linguistic meaning in tonal languages, these findings suggest 
that pitch contours might have a linguist function. However, 
both of these studies investigated the pitch range and relied on 
imaginary scenarios, and it remains unclear to what extent 
pitch contour shape in those conditions actually differs in 
genuine natural interactions.  

Pitch contours have routinely been analysed qualitatively 
using human raters [2]. There have been several attempts to 
find reliable alternative quantitative methods to pitch contour 
analysis [e.g. 3, 9, 10], but no single approach has emerged as 
either simple in its execution, or capable of being applied to a 
wide variety of speech types. Approaches using mathematical 
modelling of pitch values [9] allow analysis of a variety of 
different speech components, but in practice proved rather 
complex for general use. However, recent experimental work 
based on principle component analysis of syllable pitch values 
(eigenpitch [10]) avoids much of this complexity. Although 
the method remains to be tested in comparative speech 
conditions, it offers the potential to characterise pitch contours 
in a generalised context. Careful scaling of contours would be 
required to avoid inclusion of other non-shape related 
variables (e.g. contour length, referential pitch) without over 
abstraction of the contour shape, and as such the approach is 
presently not suitable for accurate characterisation of pitch 
contour shape. 

Here we evaluate two approaches that are currently used in 
the natural sciences and that might provide objective easily 
usable alternative methods of pitch contour analysis. The first 
is Eigenshape Analysis (EA), which also uses a principal 
component-like approach to characterise the actual shape 
variation of pitch contours in series of conditions through 
transformation of the contours’ x-y co-ordinates [11]. The 
second approach comprises an artificial neural net system that 
is presently in development as an automated identification 
system at the Natural History Museum (NHM), London. The 
Digital Automated Identification SYstem (DAISY) works by 
grouping objects it perceives to share similar features, 
allowing the shape-space consistency of pre-defined groupings 
(e.g. IDS, ADS and FDS) to be tested using the system’s own 
diagnostic functions [12].  

The present study has two aims. The first is to determine 
whether exaggerated pitch contours in IDS have a linguistic or 
emotional function by comparing them with a linguistic FDS 
comparison group (with ADS as a control group). The second 
aim is to evaluate the utility of the two algorithmic approaches 
for pitch contour analysis by comparing them to the more 
traditional approach of using qualitative analysis. 

2. Method 

2.1. Data collection and preparation of image files 

Speech samples from ten British mothers recorded during 
natural interactions with their infants, a foreign and British 
confederate (both adults) [6] were analysed. A procedure was 
used to ensure that speakers used the target words ‘sheep’, 
‘shark’ and ‘shoe’ in each condition. These words had been 
found to be prosodically highlighted in earlier studies [4, 6], 
and pitch contours were extracted from these. A total of 167 



words were used for the extraction of the pitch contours (IDS 
= 60, ADS = 53, FDS = 54). Pitch contours were extracted in 
Praat 4.1.19 [13], the pitch range for the extraction was set at a 
floor of 100 Hz and a ceiling of 600 Hz (recommended setting 
in Praat 4.1.19 for female voices) [13]. In order to obtain more 
homogenous contours, the ‘smooth’ function was used (set at 
bandwidth 10 Hz). Finally, the pitch contours were drawn in 
Praat 4.1.19 (set at a pitch range of 100-600Hz, duration of 0.7 
seconds).  

Pitch contours were then standardised for duration without 
distorting the shape, the lines were enhanced to 8-point 
thickness, and then converted to a standard 500 x 500 pixel 
grid TIFF format at 72 dpi in Corel PhotoPaint 11.0. The 
reason for this procedure was to create a standardised format 
that could be used in all three approaches. The line thickness 
enhancement was required for the DAISY analysis, as the 
system is only effective using images with strong patterns of 
pixel contrast. 

2.2. Procedure 

2.2.1.  Qualitative analysis 

Five raters (four females, one male; mean age 29.6, SD 5.4) 
were used to rate and categorise the 167 pitch contour images 
using a rating scheme with five shapes and one undecided 
option. The shapes consisted of 1) bell; 2) complex; 3) falling; 
4) rising, and 5) level shapes (see additional material), chosen 
on the basis of previous studies [2]. Raters were informed that 
the shapes on the rating scheme were ideal representations, 
and that the presented images would probably not exactly 
resemble these ‘ideal shapes’. Raters were given five trial 
images to familiarise themselves with the images and rating 
scheme. Once this trial was completed, the raters were 
presented with the 167 images in counterbalanced order to 
avoid order effects. The order was reversed for the last two 
raters to avoid anomalous results for the final images. The 
raters were not aware that those shapes constituted three 
different speech conditions. No time limit was given for the 
procedure. In order to determine reliability, intraclass 
correlation was carried out for the five raters (reliability 
coefficient � = 0.97), and was found to be good. To determine 
the intra-rater reliability, rater number two repeated the 
procedure three weeks later, and this was also found to be 
good (reliability coefficient � = 0.96). 

2.2.2. Eigenshape analysis 

TpsDig 2.0 [14] was used to collect the contour coordinate 
nodes from the pitch contour TIFF images. The number of 
coordinate points required to accurately characterise the curve 
depends on the complexity of its shape, must remain constant 
in all images and begins at a common landmark point (detailed 
discussion of the eigenshape technique can be found elsewhere 
[11]). In the current study 37 coordinate points were found to 
sufficiently characterise all curves, and the extreme left hand 
side was used as the starting point. The coordinate pairs were 
then transformed from their Cartesian (x-y) form to a � shape 
function using MacLeod’s ‘X-Y to Phi.exe’ program to 
provide a series of net angular deviations from the starting 
point that represents a dimensionless map of the contour shape 
[11]. Based on the recommended accuracy level of 95% [11], 
18 nodes were interpolated from the original 37 node curves. 
The �-transformed coordinate data output of ‘X-Y to Phi.exe’ 
was then analysed using ‘Eigenshape.exe’. The output of this 
program includes determination of each eigenshape, the mean 
eigenshape, eigenvalues and the individual eigenshape scores 
on each eigenshape axis (used for further statistical analysis). 

X-y coordinates that can be plotted for graphic visualisation of 
each eigenshape and the mean eigenshape were provided by 
‘Phi to X-Y.exe’. Eigenscores for each eigenshape were then 
used for discriminant cannonical variates analysis (CVA). 

2.2.3. DAISY analysis 

DAISY uses a Lucas n-tuple-based nearest neighbour 
classifier augmented by plastic self-organising map extensions 
to group 8- or 24-bit TIFF images based on shared patterns of 
pixel brightness values (detailed information on the current 
variant of DAISY can be found elsewhere [12]).  A standard 
procedure is used to build all DAISY training sets, and was 
followed for the present study. Firstly, the images were named 
according to their class affiliation, and appended with a 
number for later identification (e.g., IDS_1.tif, FDS_37.tif, 
etc.) and uploaded as an image library. DAISY built the 
training set from this library by transforming the Cartesian 
format TIFF files into 32 x 32 pixel grid polar thumbnails that 
encompass the majority of pattern variation, while reducing 
processing requirements. Building the training set resulted in 
an ordination space in which the individual classes should be 
ideally clustered in discrete clouds of points. The consistency 
of the built training set was then tested using cross-validation 
analysis that provided statistical output. Where the extracted 
images shared a strong affinity with other images in the 
ordination, the system was able to identify and pass them.  

3. Results 

3.1. Qualitative analysis 

Of the original six categories, the ‘undecided option’ was not 
chosen by any of the raters, indicating that the raters were able 
to categorise each of the 167 images into the provided five 
pitch contour categories (Table 1). It was found that rated 
pitch contour category and type of speech recipient group 
variables were associated, and not independent of each other 
(�2 = 544.038, df = 8, p < 0.001). Cramer’s V produced a value 
of 0.571, which indicates a strong relationship between the 
two variables (p < 0.001). Goodman and Kruskal’s Lambda 
was also calculated for type of speech recipient group (� = 
0.338, p < 0.001) and rated pitch contour category (� = 0.314, 
p < 0.001), the result of which showed that both variables 
(contour shapes and speech groups) were equally and 
significantly predictive of each other.  

Table 1: Distribution of ratings in percent for each of the five 
contours across IDS, FDS and ADS. 

Contour shape 
Speech 
groups 

Bell Complex Rising Falling Level 

IDS  63.7 12 4.7 3.3 16.3 

ADS  1.1 0 2.3 15.5 81.1 

FDS 1.5 0 6.3 13.3 78.9 

Over 60% of the IDS pitch contours were characterised as bell 
contours, followed by 16.3% level contours (Table 1). In both 
ADS and FDS this result was reversed. Here, the majority of 
pitch contours were characterised as level contours (ADS = 
81.1%; FDS = 78.9%), with less than 2% being characterised 
as bell contours in both conditions. Interestingly, none of the 
ADS or FDS pitch contours were characterised as complex 
contours, whereas 12% of the IDS pitch contours fell into this 
category. With regards to the falling contours, more ADS pitch 
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contours were categorised as falling contours (15.5%) than 
both FDS (13.3%) and IDS (3.3%). However, the difference 
between ADS and FDS is minimal (2.2%). In the category for 
rising contours, the highest frequency was achieved by the 
FDS contours (6.3%) followed by IDS contours (4.7%), with 
ADS contours achieving the lowest frequency (2.3%).  

3.2. Eigenshape analysis 

Almost 70% of the shape variation in all three conditions was 
attributable to the first eigenshape axis. As such all outlines 
exhibit a fundamental similarity with each other. Separate 
analysis of each of the three groups demonstrated that most of 
the variation on the second eigenshape axis is indeed due to 
IDS. ADS and FDS pitch contour variation is due entirely to 
the first eigenshape axis, therefore indicating that these two 
groups are similar in that they possess very little shape 
variation. In contrast IDS variation is due to both the first and 
the second eigenshape axis and, as such, indicates wider 
variation across the IDS shape space. EA also provides 
coordinates for the graphical representation of mean shapes 
(Figure 1). The IDS mean eigenshape is characterised by a 
more exaggerated curve than either ADS or FDS. In simple 
terms, the shape could be characterised as a bell curve, but the 
top of the bell curve is flattened due to shape variation within 
the IDS pitch contours. The most interesting finding is that the 
mean shape of ADS and FDS are almost identical.  
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Figure 1: Comparison of mean shapes for IDS, ADS and FDS 
plotted on Eigenshape 1 versus Eigenshape 2. 

A discriminate canonical variates analysis (CVA; 
simultaneous entry) was performed with speech recipient 
groups as the independent variable, and the scores on the 16 
axes derived from EA as the dependent variable. Univariate 
ANOVAS revealed that the three groups differed significantly 
on the eigenscores of axis 1 (F(2, 164) = 66.397, p < 0.001) and 
axis 10 (F(2, 164) = 66.397, p < 0.001). Two discriminant 
functions were calculated. The values of the first of these 
functions were significantly different for IDS, ADS and FDS 
(�2 = 130.228, df = 32, p < 0.001, Wilks Lamda = 0.453), 
whereas the second function was found not to differ 
significantly. The correlation between predictor variables and 
the discriminant functions suggested that both axis 1 (on 
discriminant function 1) and axis 10 (on function 2) would be 
the best predictors for membership of future pitch contours. 
Overall the discriminant functions successfully predicted 
outcome for 70.7% of all cases, with accurate predictions for 
IDS of 75.0%, for ADS of 77.0% and for FDS of 59.3%. 
Figure 2 shows plotting of each of the pitch contours for IDS, 
ADS and FDS on functions one and two. IDS is distinct from 
both ADS and FDS. FDS and ADS share more of their 
variance, but still represent discrete groupings, which is 
confirmed by the position of the group centroids.  

In this EA it is clear that IDS is a variable group that is 
nevertheless distinct from ADS/FDS. These adult conditions  

 

Figure 2: Combined plot of CVA functions for IDS, ADS and 
FDS. 

 
exhibit very little shape variability, but do provide notable 
characteristics that separate one from the other. The mean 
ADS and FDS eigenshapes confirm this similarity, indicating 
that the separation relates to a shape ‘tendency’ rather than to a 
strong shape characterisation, as is the case with the mean IDS 
bell contour. 

3.3. DAISY 

Each of the classes (IDS, ADS & FDS) was recognised by 
DAISY as a discrete group, but the higher number of nearest 
neighbours in IDS (mean pass = 8) indicates a tighter 
clustering of the IDS data set. Note that although ADS and 
FDS share the same mean pass coordination rate of 8, this is 
an indication of clustering consistency within each class, 
rather than an indication of a similar clustering between these 
two classes. ADS and FDS images are more homogeneously 
spaced within their class spaces.  

The individual results for each class revealed that IDS 
achieved the highest pass rate, as 80% of the images were 
correctly recognised by DAISY as belonging to the IDS class 
(Figure 3).  
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Figure 3: Comparison of pass/fail rates for IDS, ADS and 

FDS as provided by DAISY. 
 
This means that those IDS images exhibited an inherent 
similarity to each other. Only 20% of the IDS images were 
rejected by the system as not belonging to the IDS class. In 
contrast, in ADS 45% of the ADS images were recognised as 
belonging to the same (ADS) class, whereas 55% were 
rejected. This result is to a certain degree repeated in FDS. 
Here, 40% of the images/pitch contours were recognised as 
belonging to the FDS class, whereas 60% were rejected. This 
association between the type of speech recipient and pass and 
fail rates was found to be significant (�2 = 21.616, df = 2, p < 
0.001). Pass rates of below 50% show the presence of discrete 
groupings, but indicate the interdigitation of class clusters; the 



IDS cluster was clearly better separated from ADS and FDS 
than the two adult classes from each other. Fail rates indicate 
that most of the IDS failed images were mistaken for FDS 
(75%), whilst both FDS (84%) and ADS (90%) were mistaken 
for each other. 

4. Discussion 

4.1. Function of IDS pitch contours 

This study confirmed the findings of previous research [e.g. 2] 
that pitch contours in IDS are noticeably different from those 
of speech directed to adults. The pitch contours of FDS were 
found to be more similar to ADS, which is consistent with 
earlier findings [8] that utilised imaginary scenarios of FDS. 
Contrary to research comparing tonal IDS and FDS [7], we 
found no evidence of linguistic exaggeration of pitch contours 
in non-tonal FDS. The qualitative analysis found that 75.7% of 
IDS consisted of bell and complex contours. The majority of 
ADS and FDS contours were characterised as level shapes, 
with almost no occurrence of bell or complex contours. Level 
contours are therefore characteristic of ADS and FDS, whereas 
bell and complex contours seem to be indicative of IDS. 
Although the two algorithmic approaches evaluated here do 
not provide named classes for the contour shapes (a 
fundamental requirement for the raters), the results of those 
techniques are in close agreement with the qualitative analysis. 

An association between these exaggerated IDS shapes and 
particular emotional and turn taking interactions has already 
been noted, and it was suggested that they were responsible for 
the melodic quality of IDS [3]. Our findings are consistent 
with this viewpoint. They also naturally lead to the conclusion 
that, in non-tonal languages when talking to an infant, the 
speaker primarily uses pitch contour exaggeration to convey 
emotion or gain attention rather than as a tool for language 
transference. However, the results of the qualitative analysis 
also indicate a tendency for rising contours to form part of the 
characteristic shape space of FDS compared with ADS. This 
slight but tantalising finding might provide information as to 
how the two algorithmic approaches were able to separate 
ADS from FDS. Rising contours might be associated with 
questioning, possibly in the context of comprehension. The 
reliability and implications of this observation obviously 
require further investigation. 

Because we investigated the importance of the linguistic 
component of IDS by comparing it to a linguistic condition 
(FDS), our results are not useful for discussion of the relative 
independence of the emotional and attentional components. 
An emotional speech recipient group such as partner- or pet-
directed speech [e.g. 4] could potentially be more informative 
about the interdependence of these two components. 

4.2. Evaluation of novel approaches 

The results of all three approaches were consistent with each 
other, providing support to our overall conclusions. Each 
approach contributed towards the findings in different ways; 
the qualitative technique provided a useful insight into the 
proportional distribution of the contours, while the proportion 
of fails in each DAISY class allowed insight into the 
similarities between IDS and FDS. Eigenshape Analysis 
provides a readily useable statistical and visual representation 
of the groupings. Based on the present findings, we suggest 
that both approaches are viable options for pitch contour 
analysis, providing a level of objectivity that is independent of 
human raters. However, we suspect that such analyses would 
benefit from initial qualitative observations. In the present 
study we investigated pitch contours of words rather than 

sentences, and the utility of the techniques for sentences 
remains to be evaluated.  

5. Conclusions 
We conclude that the main function of pitch contours in non-
tonal IDS is emotional-attentional rather than a device to 
highlight important linguistic features. Furthermore, we 
suggest that the algorithmic approaches evaluated here present 
considerable potential for future pitch contour analysis.  
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