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Abstract 
Segmental duration was investigated in a database of Polish 
read speech (from one male speaker). The material was 
labeled automatically and then manually verified. The 
dependence of phone duration on a set of features was verified 
with the CART algorithm. The duration phenomena were 
analyzed in relation to syllable, foot and phrase structure. The 
results showed the need of segmental as well as 
suprasegmental modeling for the analysis of segmental 
duration. 

1. Introduction 
Duration control is a standard requirement that needs to be 
met to provide the naturalness and intelligibility of the output 
obtained from speech synthesis systems. Models for 
predicting duration may be constructed using various 
techniques: e.g. defining and testing rules, analysis of 
regression, neural networks or classification and regression 
trees (CART)[1][2][3][4][5][28]. Generally, the more 
traditional, rule-based technique follows linguistic cues, and 
the remaining ones are corpus-based. However, in practice it 
is often the case that the two kinds of approach overlap. 
Careful linguistic feature extraction in the stage of data 
preparation may significantly improve the results of statistical 
processing. Usually, duration control is considered either on 
the level of the phone [6] or the syllable [7]. In rule-based 
concatenation systems, the diphone may also be used as a unit 
for prediction [2]. Segmental duration may be influenced by 
both speech rhythm and intonation, which is why they are 
often considered together, and the relationships between them 
are explored in search of a model appropriately reflecting the 
temporal speech structure [8][9].  

In this study, the CART technique was used to predict 
segmental duration on the phone level. The influence of a 
preliminary set of features on phone duration was examined as 
well as the possible duration modifications on the level of the 
syllable, the foot and the phrase.  

2. The data and the features 
The study material for this paper consisted of almost 50 
minutes of recordings read by a male professional native 
speaker of Polish (the total number of phones was 42082, and 
after removing pause labels 39104 cases remained). The 
recordings come from a larger database on Polish segmental 
duration (in preparation) containing the corpus used here as 
well as three other corpora (a short text read by 40 speakers, 
isolated phrases (20 speakers), and a longer, emotionally 

marked read text (2 speakers). A part of the present corpus 
was recorded in two speech rates: normal and a faster rate. 

 

2.1. Segmentation and labeling 

Initially, the material was labeled automatically using the 
CreatSeg software (currently developed under the name 
Salian) [10]. The software enables utterance labeling into 
phonetic-acoustic segments. The obtained segmentation 
accuracy is 10 ms. In the second step, the labeling was 
carefully examined and corrected manually on the basis of 
visual inspection of spectrograms.  
The applied transcription format was a modified Sampa [11] 
[12][13]. The following sound labels were applied: [a, b, c, d, 
d^z, d^Z, d^z', e, f, g, i, J, j, k, l, m, n, N, n', o, p, r, s, S, s', t, 
t^s, t^S, t^s', u, v, w, x, y, z, Z, z', ow~, ew~, aj~, ej~, oj~, @]. 
The labels [c, J] were added to mark the palatalized 
allophones of /k, g/. Original SAMPA symbols for the 
nasalized vowels [e~] and [o~] were abandoned in favor of  
[ew~], [ow~] before fricative consonants /f, v, s, z, S, Z, x/ 
and in favor of [e], [ow~] when occurring word finally. The 
labels [e~] and [o~] before palatal fricatives [s’, z’] were 
replaced by [ej~] or [oj~] respectively. As for the label [aj~], 
it was introduced to mark the possible variants of realizations 
of the grapheme sequence: ań in a position preceding a 
fricative as in the word pański (typical pronunciation: [p a n’ s 
c i] or an alternative pronunciation variant: [p aj~ s c i] (cf. 
[13] for more details). Initially, we intended to split each of 
the five labels into two parts (oral and nasalized), however in 
our experiments with synthesizing speech sounds of this kind 
for the above contexts (e.g. [14]) better results were observed 
when the aforementioned sounds were synthesized from one 
compound segment rather than from two separate ones. It 
should be mentioned that in the present material the 
diphthong labels were used sporadically (only 170 cases). The 
label [@] referring to the glottal stop was included into the 
phone set, but its usage was marginal, so statistically it is not 
important. For more details on the transcription of Polish, see 
[12][13]. 

Word stress was marked on the last but one syllable (with 
a few changes introduced after perceptual verification) which 
is the norm for Polish. Phrase boundaries were established 
taking linguistic cues into consideration and then verified on 
the basis of perceptual evaluation of intonation contours, 
intensity and pauses. The annotation format applied was the 
BLF (Boss Label Format) (cf. [15]). 

In the preparation stage before the CART analysis, basic 
statistics were run for the study material using STATISTICA 
software in order to assess the potential contribution of 



particular features in duration modeling and to verify the 
correctness of segmentation and labeling procedures. These 
are going to be the subject of more detailed examinations in 
the near future. 

2.2. The features  

In the first step of the CART analysis, a set of 52 features was 
established for preliminary processing. The following list of 
features was used to define the features: 
• Phone identity (43 categories, see 2.1 above) 
• Articulation manner (11 categories) 
• Articulation place (10 categories) 
• Presence of voice (2 categories) 
• Sound type (3 categories) 
• Pre/Post-pausal phone position (3 categories) 
• The same/different place of articulation in the 

preceding/following phones (2 categories: the same or 
different articulation place) 

• The same/different neighboring phone in the 
preceding/following phones (2 categories: the same or a 
different phone) 

• Position relative to consonant clusters (4 categories) 
• Position within the syllable structure (3 categories: 

position in onset or nucleus, or coda) 
• Syllable position within the word (syllable distance from 

the beginning/end of the word counted in syllables) 
(float) 

• Syllable position within the foot structure  (3 categories)  
• Foot position within the phrase (foot distance from the 

beginning/end of the phrase counted in feet) (numerical 
value) 

• Sound position within the phrase (3 categories) 
• Stress (3 categories) 
• Word length (number of phones) (numerical value) 
• Speech rate (2 categories: normal and fast) 

The sound classes determined by the features ‘Articulation 
manner’, ‘Articulation place’, ‘Presence of voice’, and ‘Sound 
type’ were defined both for the given phone and for its 
preceding and following context. The context was verified for 
the phones directly adjacent to the sound in question, for the 
post-following and pre-preceding ones and also for the 3rd 
phone before and after the sound. For the feature ‘Articulation 
place’ the possible durational contribution of the following 
categories was checked with the CART analysis: bilabial, 
palatal, dental, labio-dental, velar, alveolar, labio-velar, back 
vowel, front vowel, palatalized vowel. The sound class 
‘Articulation manner’ was divided into categories as follows: 
fricative, affricate, nasal, w, j, r, l, vowel, nasalized vowel, 
and stop. For the ‘Sound type’ class, three categories were 
used: vowel, consonant, and compound vowel. The ‘Pre/post-
pausal position’ feature also had three categories: pre-pausal 
phone position, post-pausal phone position and phone position 
non-adjacent to any pause. For ‘Position relative to consonant 
clusters’, three categories were considered: phone position 
within a cluster of more than two consonants, phone position 
directly following such a cluster and phone position with no 
direct neighborhood of any consonant cluster. For the feature 
‘Syllable position within the foot structure’ the notion of the 
foot and anacrusis (see e.g. [16]) was accepted. We 
understand the foot as the interval between two subsequent 
stressed syllables. Anacruses may occur utterance-initially 
and comprise of syllable(s) preceding the first stressed 

syllable of the utterance. Three categories were distinguished 
in this class:  the syllable position in the foot’s head (the first 
syllable of the foot, i.e. the stressed syllable), in its tail (one of 
the unstressed syllables following the stressed one) or in the 
anacrusis. In due course we intend to check the effect of the 
foot in more detail (especially its length and relations with 
syntactic structure). For the class ‘Stress’, three categories 
were taken into account: the last word stress of a phrase 
(nuclear accent), word stress (pre-nuclear), and no stress. The 
sound position within the phrase could be initial, medial or 
final. 

2.3. Remarks on feature selection 

The above list of features was established on the basis of other 
studies and previous data for Polish e.g. [17][18][9]. Only part 
of them proved to be significant both in the preliminary 
variance analysis and by using the CART method of analysis. 
The size of the corpus (almost 50 minutes of recordings of 
read speech) seems to be representative. It is hard to expect 
great improvement of the results by enlarging the dataset.  

What seems to be more important is to ameliorate the 
factorization scheme. It seems that suprasegmental features, , 
especially speech rhythm should be investigated in more 
detail. Including speech rhythm information is essential for 
duration modeling, but so far solutions for implementing the 
information for the purposes of automatic analyses have not 
been satisfactory. 

In many languages speech rhythm is related to the 
phenomenon of isochrony. In so-called stress-timed 
languages, the rhythm units are assumed to have a relatively 
constant length, regardless of the number of syllables 
([19][20]). In these languages (e.g. English, German, Dutch, 
Polish) speech sounds are shortened to a certain degree along 
with the lengthening of the rhythm unit. Jassem [21] 
presented an analysis of isochrony useful for practical 
applications. However, it should be stated that the notion of 
isochrony has been controversial for some of the languages 
and it is often subject to further investigation. One of the more 
interesting solutions to the problem of duration modeling for 
TTS purposes is the Prosynth model based on phonological 
theory (Ogden et.al.[22]), which is a syllable-based model. 
Simplified isochrony models based on vowel duration 
analyses have also been developed, such as the PVI - Pairwise 
Variability Index (e.g. [8][23]). So far, however, none of the 
existing utterance structure models has permitted 
unconstrained speech rate and speech rhythm control.  

3. Results 
To obtain our results, we used the CART implementation 
wagon which is part of the Edinburgh Speech Tools [24]. 
We performed the training using 95% of the data for training 
and leaving out 5% for testing. This yielded an RMSE of 
25.86 ms and a mean correlation of 0.62.1 
We then used the stepwise option of wagon to estimate the 
contribution of our features. This time, the complete dataset 
was used. The resulting RMSE equaled 25.60 ms and the 
mean correlation was 0.63. The obtained feature ranking is 
presented in Table 1. 
In the first column, the feature names are given and the second 
column gives the cumulative correlation values between the 

                                                           
1 See [24] and [28] for details on these parameters. 



observed and predicted duration obtained in the CART 
modeling process. 

Table 1: Feature ranking. 

Feature Corr. 
Phone identity 0.4088 
Following phone identity 0.5425 
Preceding phone identity 0.5626 
Articulation manner of the 3rd following phone 0.5764 
Syllable position within the foot 0.5847 
Articulation manner of the preceding phone 0.5900 
Foot position within the phrase (distance to the 
right phrase boundary) 

0.5936 

Word length in phones1 0.5967 
Articulation manner (the phone in question) 0.6010 
Presence of voice (the phone in question) 0.6066 
Speech rate 0.6102 
Presence of voice in the following phone 0.6132 
Articulation manner of the post-following 
phone 

0.6151 

Articulation manner of the pre-preceding 
phone 

0.6167 

Sound type (the phone in question) 0.6180 
Articulation manner of the following phone 0.6208 
Presence of voice in the preceding phone 0.6217 
Articulation place in the following phone 0.6225 
Foot position within the phrase (distance to the 
left phrase boundary) 

0.6229 

Sound position within the phrase 0.6237 
Syllable position within the word (distance 
from the beginning of the word) 

0.6242 

Articulation place in the post-following phone 0.6248 
Articulation place in the preceding phone 0.6251 
Presence of voice in the pre-preceding phone 0.6254 
Presence of voice in the post-following phone 0.6256 
Sound type of the preceding phone 0.6259 
Sound type of the post-following phone 0.6262 
Articulation place of the pre-preceding phone 0.6264 
Syllable position within the word (distance 
from the end of the word) 

0.6265 

Presence of voice in the 3rd following phone 0.6266 
Sound type of the following phone 0.6268 
Position relative to consonant clusters 0.6269 
Pre-preceding phone identity  0.6269 
Sound type of 3rd following phone 0.6270 
Articulation place of 3rd following phone 0.6270 
Post-following phone identity 0.6271 
Stress 0.6271 

 
The results show, not surprisingly, that the most important 

feature is the identity of the phone itself. The next ones are 
those connected with the preceding and following context 
identity, syllable position within the foot, and the articulation 
properties (articulation place, sound type, the presence of 
voice, and articulation manner) of the given segment and its 
context. The contribution of the features connected with 

                                                           
1 Some of the feature values for word length were 

miscalculated, so the actual contribution may be different. 

stress, segment boundaries and structure appeared to be much 
smaller.  However, as the wagon manual states, the ranking 
provided by stepwise training should not be used to derive a 
general order of importance of the selected features. 

The above results were compared to the results obtained 
from the CART analysis run for a smaller and more 
homogeneous dataset of Polish read speech using a more 
limited number of features. For a dataset of 11795 vectors of 
8 parameters, an RMSE of 19.3 ms and mean correlation of 
0.677 was obtained, which is not substantially different from 
the outcome for the present material. 

In order to check if the results would improve, a series of 
tests were run using various features sets applied to chosen 
subsets of the database. The general tendency observed was 
that removing subsets from the corpus and limiting features 
number deteriorated the overall performance of the CART 
processing. The effect of excluding corpus subsets recorded in 
two speech rates and the subsets containing isolated phrases is 
shown as an example in Table 2 below. The table presents 
also the results obtained from only the largest subset of the 
database, which appeared to achieve the highest mean 
correlation value and the lowest RMSE. This set is described 
as “emotionally marked”. While it is not surprising that a 
more uniform set results in a better durational prediction, this 
could also be a hint that our feature set does not sufficiently 
capture the variation induced by speaking style and affect.  

Table 2: CART results for various data subsets. 

Test RMSE [ms] Mean Correl.  n 
3 sets removed 31.32 0.53 19823 
2 sets removed 28.86 0.57 26302 
1 corpus subset   20.08 0.69 6586 

 
The highest correlation for the identity of the segment in 

question was reported by many researchers for various 
languages (cf., [26] [27]Fehler! Verweisquelle konnte nicht 
gefunden werden.). The order of the subsequent features  
varies across different studies, however, in most of them the 
identity of the neighboring segments is mentioned among the 
top ones (e.g.,[5][26]), similar to the present results. Further 
features observed to be significant by other researchers are 
those related to phrase structure and rhythmic properties of 
the utterance. The latter were not sufficiently explored for the 
present study, which may explain the relatively low mean 
correlation (0.62 as compared with 0.79 for Czech [5], 0.75 
for Hindi [26], or 0.73 for Korean [27]. The RMSE was 
relatively good in the present experiment (25,86 ms) as 
compared with the same parameter in the example studies 
mentioned above (20.3, 27.1 and 26.5 ms respectively).  

4. Discussion 
Difficulties related to automatic duration modeling were 

discussed in detail in many studies (cf., [7][8]) and the 
fundamental problems in this matter have already been solved 
for read speech. Duration prediction by means of learning 
techniques (especially with the popular CART algorithm) 
enables direct implementation in speech synthesis providing 
relatively correct output. However, feature revision and 
adding new features of the suprasegmental level seems 
necessary, especially with respect to synthesizing spontaneous 
and expressive speech. 



In our study, several features of the segmental level 
showed 60% correlation, and adding other features (most of 
them of the segmental level) did not significantly improve the 
results. What appears especially important now, is a careful 
selection of features influencing duration both on the 
segmental and the suprasegmental level within the 
intonational-rhythmic phrase structure.  

5. Conclusions 
In spite of a relatively low correlation between observed 

and predicted durations, the feature ranking order was in 
agreement with results reported earlier (see section 3 above). 
Nonetheless, further statistical analyses and testing are 
required to verify the feature selection made mostly on the 
basis of linguistic presumptions. For the purposes of duration 
modeling of various speech styles (e.g. with attitude or 
emotion), adding new features, especially those describing the 
internal structure of feet and a more sophisticated analysis of 
the suprasegmental level might be necessary. 

 It would also be desirable to check our factorization 
scheme with learning techniques other than CART (e.g. 
neural nets, regression analysis, rough sets) and rules.   
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