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Abstract
Generating meaningful and natural sounding prosody is a cen-
tral challenge in text-to-speech synthesis (TTS). In traditional
synthesis, the challenge consists of how to generate natural tar-
get prosodic contours and how to impose these contours on
recorded speech without causing audible distortions. In corpus
based synthesis, the challenge is the sheer size of the speech cor-
pus that is needed to cover all combinations of phone sequences
and prosodic contexts that can occur in a given language. A new
method is proposed based on the following concepts. The set of
phone sequences in a language can be partitioned in terms of the
manner of production of their constituent phonemes. For each
sub-class in this partition (e.g., vowel-nasal-unvoiced frica-
tive), a representative sequence is chosen (e.g., [e]-[n]-[s]), and
recorded in a wide variety of prosodic contexts. The remain-
ing sequences in this subclass are recorded in a much smaller
number of contexts, potentially only one context. The method
describes a procedure for generating sequences in prosodic con-
texts in which they have not been recorded, by transplanting the
prosodic contours of sequences in the same sub-class that have
been recorded in these contexts. The method uses time warp
algorithms in a superpositional framework.

1. Introduction
Generating meaningful and natural sounding prosody is a cen-
tral challenge in text-to-speech synthesis (TTS). Two broad
classes of methods are currently used. In both methods, natural
language processing algorithms are used to generate a multi-
layered symbolic, linguistic representation of the input text, or
Linguistic Data Structure. In the Traditional Concatenative
Synthesis method, target contours are computed by rule from
the linguistic data structure, and these contours are then im-
posed on stored speech units using signal modification methods
such as Linear Predictive Coding [1], PSOLA [2], sinusoidal
modeling [3], or MBROLA [4]. The Unit Selection Synthesis
method uses neither target contours nor signal modification. In-
stead, a large, labeled speech corpus is searched for a sequence
of speech intervals whose labels match the linguistic data struc-
ture. If a match can be found, then the resulting speech is sim-
ply a sequence of intervals of digitized natural speech and can
be indistinguishable from natural speech.

This paper briefly discusses the problems inherent in the
two methods, and then proposes a new method that combines el-
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ements from both. The method builds on earlier work described
in [5], and forms an overall framework for the TTS research
projects conducted in our lab.

2. Limitations of Current TTS Methods
2.1. Traditional Concatenative Synthesis

In this method, the quality of the generated speech prosody de-
pends on two factors: the naturalness of the target contours
and the absence of signal modification distortions. Although
progress has been made on both fronts, the current popularity of
unit selection synthesis illustrates that neither problem is con-
sidered as having been fully solved. One fundamental problem
is that prosodic control factors such as word stress and prox-
imity to phrase boundaries affect multiple acoustic dimensions,
including the fine temporal structure of the speech signal, pitch,
spectral balance, and spectral dynamics. Both the task of com-
puting target contours and the task of imposing these contours
on speech have proved to be difficult.

2.2. Unit Selection Synthesis

The limiting factor in this method is the availability in the
speech corpus of units that match any linguistic data structure
that the system may be called upon to synthesize. It is well-
known (e.g., [6, 7, 8]) that the number of distinct prosodic and
phonemic contexts that a given phone sequence can occur in is
extremely large in unrestricted domains, and even in restricted
domains such as names and addresses. In fact, the probability
is near-certainty that a given input text will require phone se-
quence / context combinations that the speech corpus does not
have. These problems are ameliorated as a result of two fac-
tors. One is that the frequency distribution of phone sequence
/ context combinations is extremely uneven, so that frequency-
optimized speech corpora can have much better coverage than
corpora with randomly selected text. Second, not all contextual
distinctions are associated with audible acoustic differences.
Thus, the system may benefit from the presence of phone se-
quence / context combinations that are acoustically similar to
combinations the system is searching for but that are absent.

Nevertheless, Unit Selection Synthesis faces three profound
problems. First, the sole avenue for quality improvement lies
either in ever-larger speech corpora or in limiting the system to
restricted domains. Second, there is an increasing interest in
highly expressive speech. This poses problems for Unit Se-
lection Synthesis because it increases the combinatorics and
it creates larger pitch excursions that are more likely to cause
prosodic discontinuities. Third, concept-to-speech and human-
machine dialogue applications make mark-up language driven
TTS increasingly more important. Mark-up tags make similar
demands on the TTS engine as expressive speech.



3. Proposed Method
The proposed method attempts to address two issues. One is
to increase the naturalness of target contours, and the other is to
minimize the amount of signal modification. The key difference
with Traditional Concatenative Synthesis is that the system uses
natural target contours instead of target contours that are gener-
ated by rule. The key difference with Unit Selection Synthesis
is that signal modification is performed.

The fundamental idea is to create a speech corpus consist-
ing of phone sequence phonemic / prosodic context combina-
tions that form a specially structured subset of the set of all such
combinations, and then use a prosody transplantation method to
generate the remaining combinations from this subset.

3.1. Completeness of Incidence Matrices with Missing Data

Following [5], we use the notation ��� , ��� , ����� to denote phone
sequences, �	� , �
� , ����� to denote prosodic contexts, and

� ����
������ ,� � � 
�� � � for their combinations. For example, � ��� � �����	�
and �	� � ����� ��!#"%$ �'&��)(*� !,+ 
-� & " ( �	$�"%"%$
. 
�/0/1/ � characterizes the
sequence of phones and the corresponding prosodic / phonemic
context for the initial part of the phrase ”..., we use ...”

Let 2 and 3 be the sets of phone sequences and contexts in
a given domain. If one has a recombination method for generat-
ing

� ��45
���67� from
� ��8�
*��9:� , � ��4,
���9�� , and

� ��8*
-��6;� , then one can
generate any

� � <,
���=�� if the following is true. First construct the
binary >?2A@B>C3 incidence matrix D , in which cell

� � 
 � � con-
tains 1 whenever ( ��8�
���9 ) is present in the speech corpus, and 0
otherwise. Matrix D is said to be complete if iterative applica-
tion of the following rule (known as the R-method [9]) causes
each cell in the matrix to contain 1:

E'F DHG I �KJ 
LDHG M �HJ 
LN�OQPRDHS I �HJT-U#V OWDHS MYX J
In other words, if (i) a combination method is available,

(ii) the incidence matrix of a given corpus is complete, and (iii)
the sets 2 and 3 cover all phone sequences and contexts in
the target domain, then all combinations needed for the target
domain can be generated. An example of a complete matrix is
a matrix in which DZ� 9 �[J for all � and D 8 � �KJ for all � .

Because, as this example suggests, only >C2H\]>?3[^`_
cells need to be occupied for D to be complete, the amount of
recordings necessary for coverage could be reduced by orders
of magnitude compared to unit selection based synthesis. To
illustrate, if we let 2 be the set of diphones in English and 3
a set of contexts known to affect prosody (e.g., combinations
of word stress, sentence accent, within-phrase word location,
...; [10]), having 2,000 and 20 elements respectively, then the
number of recordings is reduced from 40,000 diphone tokens to
2,019, or by 95%.

3.2. Recombination Method

Consider
� ���

������ , � ����
������ , and

� ���

����
� . For example let
� �W�a� �b�)� , � �c�d� �:e�� , � �f�hg O i T�j-V i�i V P , and � �W� i T�j-V i�i V P .
The proposed recombination method measures the difference
between

� � � 
�� � � and
� � � 
*� � � and applies this difference to� � � 
�� � � in order to obtain

� � � 
*� � � .
A central assumption in the proposed methods is the same

assumption that underlies traditional synthesis, which is that the
speech signal can be decomposed into segmental and prosodic

information. For an example, consider Linear Predictive Cod-
ing (LPC) based synthesis where segmental information is con-
tained in a vector (“segmental vector”) comprising filter pa-
rameters and a voicing flag, and the prosodic information is
represented by a vector comprising the fundamental frequency
and the duration of the frames (“prosodic vector”). Many other
examples of segmental/prosodic decomposition exist, including
representations in which the segmental vector contains all in-
formation about the raw speech wave and the prosodic vector
information is used to modify the segmental vector at run time;
the prosodic vector may contain information not only about
fundamental frequency and loudness but also about the rate of
spectral change in order to mimic reduction phenomena (e.g.,
[11, 12]) or about spectral balance [13].

3.2.1. Alignment of Equivalent Phone Sequences

Two sequences � � and � � are equivalent if they contain the
same number of phones and if in both sequences the k -th phone
has the same manner of production for all k . Thus, the phone
sequences in the words ”medal” and ”neighbor” are equivalent.

Consider intervals of speech of the type

lWm n � � (
o p 8 9�q rts)u�vtsxw ( w p 8 9�q y{z�| �
where the first subscript corresponds to phone sequence ��8 and
the second subscript to context � 9 . When ��� and ��� are equiv-
alent, this allows defining a piecewise linear time warp func-
tion, } ���{~f��� , that relates

� � � 
�� � � and
� � � 
�� � � and maps

lc���
onto

l �
�
by extending the correspondence between the phone

boundaries in the two intervals.
Note: Throughout, the notation } 8 9 ~R4 6 will be used for a

time warp that maps
lcm n

onto
lR�	�

. It will be assumed that the
time warps are strictly increasing, so that }h� �8 9 ~R4 6 exists and is
equal to } 4 6 ~ 8 9 .

3.2.2. Measurement of Context Effects on Timing

Similarly, for
� ���

������ and

� ���

����
� , we can establish a time
warp function } ���{~f�{� that maps

lC�
�
onto

lC���
. This time

warp characterizes the temporal effects of the contextual change
from �	� to �
� . Because the same phone sequence is involved,
this time warp does not have to rely on the piecewise linear ex-
tension of the correspondence between the phone boundaries
in the two intervals, but instead can use dynamic time warp-
ing based on a frame-to-frame distance measure between the
frames in the two speech intervals. It has been shown [14, 15]
that certain contextual effect are far from uniform within phone
intervals, and that these non-uniformities can be captured with
dynamic time warping. For example, phrase-final lengthening
affects primarily the final part of the vowel.

An equivalent characterization of context effects on timing
is in terms of the slope of the time warp, or

�5�0�	� V ���{~f�{� � ( � � }����{~C�{� � ( \ J ��^Y}����{~f�{� � ( � (1)

�,�1�:� V ���{~C�{� measures the amount of stretching or compression
at time ( as a result of the contextual change from �:� to �
� .
3.2.3. Measurement of Context Effects on Fundamental Fre-
quency

The procedure followed is based on superpositional modeling.
According to this approach, �L� contours are viewed as resulting
from the additive (typically in the log frequency domain) com-
bination of underlying curves having different temporal scopes



and tied to different phonological entities. The best known of
these, the Fujisaki Model [16, 17], uses phrase curves and ac-
cent curves. In other approaches (e.g., the Linear Alignment
Model [18]) also segmental perturbation curves are included,
representing the systematic effects of certain segmental classes
on the pitch contour (e.g., ��� is shifted upward in vowel regions
during the first 50-100 ms after the offset of an obstruent.)

Denoting the � � contour in
� � 8 
�� 9 � as ��� 8 q 9��� , we decom-

pose ��� 8)q 9��� into two underlying curves, a phrase curve and a
combined accent and segmental perturbation curve:

� � 8)q 9��� � ( � ��� � 8 q 9��<���	 � ( � \ � � 8)q 9��
��
��������� � ( � (2)

The phrase curves occurring in the speech corpus (i.e., for
� � 
 � �

= (1,1), (1,2), and (2,1)) are currently estimated manually using
a graphical speech display, while the phrase curves that are to
be computed (i.e., for

� � 
 � � = (2,2)) are generated by rule using
the Linear Alignment Model [18]. � � 8 q 9��
������������ is computed by

subtracting ��� 8)q 9��<���	 from � � 8)q 9��� . Figure 1 shows examples.
The method chosen for measuring the relationship between

� � � q � �
��
��������� and � � � q � �
����������
� proceeds as follows. Letting � 8 9 de-
note the mean of the section of the phrase curve corresponding
to the time interval spanned by

� � 8 
�� 9 � , define the curve:

� ���{~f�{� � ( � � � � � q � �
����������
� � } ���{~f�{� � ( � � \�� �{�
� � � q � �
������������ � ( � \��A��� (3)

This curve describes the relationship between � � � q � �
����������
� and

� � � q � �
��
��������� as a ratio curve; the values between which the ratios
are computed are taken from corresponding points in the seg-
mental vector stream. This ratio curve is not smooth, and is
subjected to smoothing using isotonic smoothing [19] followed
by Gaussian smoothing (See Figure 2.).

3.2.4. Computing the Segmental Vector Sequence

The segmental vector sequence in
� � � 
�� � � consists of the se-

quence
���" ��� � ( � � , where ( ranges over the interval

l ���
. We now

use } ���{~f��� and
�,�1�:� V ���{~f�{� to create a time warp } ���{~R��� ,

which is then applied to
���" ��� � ( � � to create

���" ��� � ( � � . Let:
�5�0�	� V ���{~R��� � � � � �5�0�	� V ���{~f�{� � }A���{~f��� � � � � (4)

Then:
} ���{~R��� � ( � ��!#"%$'& �,�1�:� V ���{~W��� � � � (5)

Finally, denoting for a given combination
� � 8 
�� 9 � at (discrete)

time ( the segmental vector as
�" 8 9 � ( � :

�" ��� � � � � �" ���%� } ����~R��� � � � � (6)

In words, to generate
� ���	
��
�
� from

� ���%
��	��� , we apply the
same local stretch or compression factor to the time points in� ���	
������ as are applied to the corresponding (via } ���{~C��� ) time
points in

� � � 
�� � � to obtain
� � � 
*� � � .

3.2.5. Computing the Prosodic Vector Sequence

The generation of ��� � q � �� � ( � proceeds as follows. First, a phrase
curve, � � � q � �<���	 , is computed by rule, via the Linear Alignment
Model. Let (B� } ����~R��� � � � , for

��( l �
�
, and define

� � � q � �
������������ � � � � � ���{~f�{� � ( � @ (7)

� � � � q � �
����������
� � ( � \)� ���*� ^*� ���
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Figure 1: � � 8)q 9��
������������ � ( � , for � , � = 1, 2. Vertical lines indicate
vowel onset.

Finally, let ��� � q � �� � � � ��� � � q � �
������������ � � � \ � � � q � �<���	 � � � (Figure 1,
upper right panel).

This operation has three important properties. First, it pre-
serves the synchrony between local segmental perturbations
of the � � contour and the segmental frames, because these
perturbations are represented in � � � q � �
��
��������� � ( � and because the
multiplication curve,

� ���{~f�{� � ( � , is smooth. There is evi-
dence that certain segmental perturbations are independent of
prosodic context, specifically accent status and proximity to
phrase boundaries [18]. An additional benefit or preserving this
synchrony is that it has been shown that signal processing arti-
facts can be predicted by comparing the original and target pitch
contours in terms of pitch values and pitch derivatives [10].

Second, the alignment of the � � contour, for example as
measured by peak location relative to syllable boundary loca-
tions, is known to vary as a function of the manner of production
of the segments associated with a pitch accent [18], specifically
with the segments in the coda of the accented syllable. This
fact, in combination with the need for time warps between dif-
ferent phone sequences, forms the primary reason for focusing
on equivalent phone sequences.

Third, peak location has been shown to vary non-uniformly
with the durations of the segments making up the accented (and
post-accented) syllables [18]. For example, a change in the du-
ration of the onset brings about a much larger change in peak
location than the same change in the duration of the nucleus
or coda. The non-uniform time warping procedures reflect this
result.

4. Conclusions
A method was proposed that combines a scheme for speech cor-
pus construction, based on complete incidence matrices with
missing data, with a prosody recombination method, based
on time warping and pitch target contour computation us-
ing smooth ratio curves within a superpositional framework.
The method addresses key weaknesses in current approaches,
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Figure 2:
� ���{~f�{� � ( � .

namely the reliance on extraordinary amounts of data in Unit
Selection based Synthesis and the reliance on artificial target
contours and signal modification methods in Traditional Con-
catenative Synthesis.

In order to create a full-scale implementation of the method,
several problems still need to be addressed. First, determination
of the phone sequences in a given domain, 2 .

Second, determination the contexts in a given domain, 3 .
Elsewhere [20], it has been shown that “foot based tagging”
provides a concise characterization of the joint factors of word
stress, sentence accent, and within-phase location. However,
this tagging scheme leaves out other prosodic factors such as
contrastive stress and sentence mode, and thus needs to be ex-
tended.

Third, extending the method to prosodic features other than
timing and pitch, such as spectral tilt and energy.

Fourth, non-supervised determination of the phrase curves.
Although algorithms are available for this purpose in the
context of the Fujisaki model [http://www.tfh-berlin.de/ mix-
dorff/fujisaki analysis.htm], no such algorithms are available
for the Linear Alignment Model.
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