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Abstract 

This paper presents a novel approach to the automatic 
detection of pitch accent in spoken English. The approach that 
we propose is based on a time-delay recursive neural network 
(TDRNN), which takes into account contextual information in 
two ways: (1) a delayed version of prosodic and spectral 
features serve as inputs which represent an explicit trajectory 
along time; and (2) recursions from the output layer and some 
hidden layers provide the contextual labeling information that 
reflects characteristics of pitch accentuation in spoken English. 
We apply the TDRNN to pitch accent detection in two forms. 
In the normal TDRNN, all of the prosodic and spectral 
features are used as an entire set in a single TDRNN. In the 
distributed TDRNN, the network consists of several TDRNNs 
each treating each prosodic feature as a single input. In 
addition, we propose a feature called spectral balance-based 
cepstral coefficient (SBCC) to capture the spectral 
characteristic of pitch accentuation. We used the Boston Radio 
News Corpus (BRNC) to conduct experiments on the speaker-
independent detection of pitch accent. The experimental 
results showed that the automatic labels of pitch accent 
exhibited an average of 83.6% agreement with the hand labels.  

1. Introduction 

Pitch accent is a signaling of semantic salience via extruded 
pitch that stands out from its context, e.g., being high if its 
neighbors are low, or being low if the neighbors are high. 
According to a study of pitch movement along syllables, the 
ToBI standard defines six types of pitch accents: H* (locally 
highest), L* (locally lowest), L*+H (locally lowest followed 
by a relatively sharp rise), L*+!H (locally lowest followed by 
a flat rise), L+H* (a relatively sharp rise from L* followed by 
a H*) and !H* (a step down onto a pitch accent from a high 
pitch) [1].  

The detection of pitch accent is very important for 
automatically interpreting spoken language, and thus very 
useful for the design of spoken dialogue system. Accented 
words refer to those words on which the pitch accent usually 
falls in a sentence. Accented words are usually the bearers of 
important information, especially new information in 
comparison with the given information. Moreover, unlike 
other automatic comprehension strategies, such as semantic 
parsing [2] and key words/phrases spotting [3], the accented 
word-based comprehension does not depend on the 
predictability of users’ utterances. As a result, the scenario of a 

spoken dialogue system can be designed to permit content 
increments by detecting new information using accented 
words. For example in an intelligent tutoring system, when the 
computer puts forward the question “where did you see gears 
before?”, if the accented word detected from the response of a 
child user is “machine”, then the computer will check to see if 
“machine” is in the hypothesized response. If not, then 
“machine” will be added to the response hypothesis set for the 
prediction of future responses to the same question. In this 
way, the accented word detection provides a path for the 
dialogue system’s automatic learning to become smarter and 
smarter.   

In the previous study of automatic labeling of pitch 
accent, some researchers used the duration, pitch and energy 
of syllables as the prosodic attributes to train a hidden Markov 
model whose states represented the labels. The speaker-
dependent labeling of BRNC yielded 84% correct detection 
vs. 13% false detection [4]. Some researchers used pitch and 
energy on the frame level to train a TDRNN, and the speaker-
dependent labeling of BRNC was 91.9% in accuracy for pitch 
accent and 91.0% for pitch non-accent [5].  

2. Proposed approach 

2.1. Feature extraction 

In addition to the prosodic features including pitch, energy and 
duration that haven been previously investigated, we also use 
spectral balance to capture the spectral characteristics of pitch 
accent. Spectral balance is defined as the intensity increase at 
higher frequencies (

�
 500 Hz) of vocal speech. The perception 

of Sluijter, et al. [6] showed that spectral balance was a 
reliable indicator of stress. If a speaker produced stressed 
syllables, then the intensity of signals at higher frequencies 
increased more than the intensity of signals at lower 
frequencies. The intensity level manipulation of signals at 
higher frequencies provided stronger stress than the 
manipulation on the entire frequency band. In spoken English, 
pitch accent usually occurs on the lexically stressed syllables 
that are produced with greater vocal effort. Therefore, similar 
to duration and intensity, spectral balance can be used as a 
spectral attribute for pitch accent detection. 

2.1.1. Spectral balance-based cepstral coefficients 

In order to apply spectral balance to our pitch accent 
detection, we extract features called spectral balance-based 



cepstral coefficients (SBCC). Sampled at 11k Hz, the speech 
signal is pre-emphasized and grouped into frames of 330 
samples with a window shift of 110 samples. Multiresolution 
decomposition is then applied to the speech samples within 
each frame. The filter bank consists of 14 band-pass filters 
spanning from 547 Hz to 5000 Hz.  
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     Figure 1: The multiresolution decomposition bank. 

 
After decomposing the time-domain speech signals into 

14 bands with Daubechies-4 wavelet filter coefficients [7], we 
compute the signal intensity in each band by: 
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Discrete cosine transformation (DCT) is then applied to the 
intensity of bands to derive the SBCC El by 
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where L is the desired length of the cepstrum. The cepstral 
coefficients of each frame are further subtracted by the mean 
value over frames to compensate for the disturbance caused by 
the transmission channel. 

2.1.2. Syllable-level features 

In our study, each frame is characterized by 13 SBCCs, pitch 
and log-scaled intensity. Pitch is extracted using the “formant” 
program in Entropic XWAVES with a probability of voicing 
(PV) that serves as a confidence measure. The errors caused 
by pitch doubling and halving are eliminated by deleting those 
pitch values which fall into the doubling and halving clusters 
of a 3-mixture Gaussian model. The means of the component 
Gaussian models are restricted to 1/2� , �  and 2� , where �  is 
the estimated mean value of pitch over the utterance. The 
overall intensity is normalized by the peak value in order to 
compensate for the differences in the sound volume across 
speakers. Then the feature vectors of the frames in a syllable 

are averaged in a special way to obtain the feature vector of 
that syllable. The averaging scheme is given by:  
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where Dm is the feature vector for syllable Sm, Fm[f] is the 
feature vector of frame f in Sm, � m is a subset of frames in Sm, 
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In addition, the syllable duration is added to complete the 
feature set. The duration of each syllable is normalized by the 
number of phonemes in that syllable.  

2.2. Normal TDRNN 

The detection of pitch accent is modeled by way of TDRNN. 
TDRNN is a neural network that uses the delayed input to 
capture the dependence of human perception on the spectra 
change and the dynamics of speech signals. TDRNN also uses 
the recurrent circuit(s) to capture the long-term or short-term 
context information. The context information is very important 
for pitch accent labeling, because an English word usually has 
only one primary accented syllable. Therefore, the labeling of 
a syllable affects and also is affected by the labeling of its 
adjacent syllables. As shown in Figure 2, TDRNN is a 4-layer 
back-propagation network with two recursive context layers a 
and b, which feed back delayed values from the pitch layer 
and output layer, respectively. We improve our previous 
TDRNN design [5] by adding a recursive layer from the 
output to allow more context information to be captured. The 
non-recursive input layer c processes current and delayed 
values of the input samples. In the TDRNN, the input layer 
and the two recursive layers are labeled as level 1, and the 
other three layers are labeled as levels 2, 3, and 4 along the 
direction of the arrows. Each node is a weighted sum of the 
outputs of the nodes on its previous layer(s) through  
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where )(, nhj tx is the activation level of node j on layer h at 

syllable tn (the syllables are indexed in the chronological order 
in the utterance), )( 1,1, −− − hijknhi tx τ is the activation level of 

node i on layer h-1 at syllable 
1, −− hijknt τ , Nh-1 represents the 

total number of nodes on layer h-1, 
1, −hiK represents the total 

number of time delays for
1, −hix , � ijk,h-1 represents the weight 

of connection between 
hjx ,

 and 
1, −hix  at syllable 

1, −− hijknt τ , 

and )(•f is a sigmoid function defined as
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xf −+
=
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this study, we fix the delay � ijk,h-1 and update the 
interconnection weight � ijk,h-1 using the error back-propagation 
learning algorithm [8]. The difference between the output 
layer and the pitch layer is compared with a preset threshold. 
Our algorithm chooses a pitch accent when the difference is 
larger than the threshold and pitch non-accent otherwise.  
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                Figure 2: The structure of TDRNN pitch accent detector (Z-1 denotes one syllable time delay). 

 

The normal TDRNN uses all the features together in a 
single unified input. That is, the feature vector of a syllable is 
16 dimensional consisting of 13 SBCC, pitch, duration and 
overall intensity. 

2.3. Distributed TDRNN 

Usually the degree of contribution varies for different features. 
As listed in Table 1, our experimental results showed that the 
classifications based on different features have different 
performance, and the pitch-based classification achieved a 
higher accuracy than the classifications based on the other 
features. However, the normal TDRNN does not reveal the 
difference existing in the contributions of different features to 
the pitch accent detection. In addition, all of the features used 
in the normal TDRNN have to use the same structural 
parameters such as time delays and the number of nodes in a 
layer. However, our experimental results showed that to 
achieve a higher accuracy, different structural parameters 
needed to be adopted for different features. For example, the 
pitch-based TDRNN used 5 nodes while the duration-based 
TDRNN used 10 nodes for the hidden layer. 

Rather than combining all the features together as an input, 
the distributed TDRNN consists of four TDRNNs each taking a 
single feature as the input, and integrates the individual 
TDRNNs by a 5-layer neural network.  In the distributed 
TDRNN, the outputs of individual TDRNNs form the 4th layer, 
and the final plant output (the 5th layer) is a weighted sum of 
the nodes on the 4th layer. Figure 3 depicts the architecture of 
the distributed TDRNN. The distributed TDRNN offers 
potential advantages over the normal TDRNN. First, the 
distributed TDRNN allows the TDRNNs of individual features 
to adopt different structural parameters (such as number of 
delays, number of nodes in a layer, decision threshold, etc.) so  

 
 
that each feature alone can achieve a relatively high 
contribution to the detection performance. Second, before 
model training, we set the initial weights connecting the nodes 
on the 4th layer and the node  of  the  5th layer quite different 
values to acknowledge the discrepancy in contributions from 
different features. For example, the interconnection weight for 
the pitch TDRNN is much larger than the interconnection 
weights for the TDRNNs of the other features. Then the 
automatic learning algorithm refines the weights to optimize the 
contribution assignment of the individual features. 
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        Figure 3: Structure of distributed TDRNN pitch accent 

detector. 
 

3. Experiments 

The TDRNN was trained and tested for the purpose of speaker-
independent, gender-dependent pitch event recognition using 
the Boston Radio News Corpus (BRNC). BRNC is a series of 
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radio stories read by seven professional radio announcers [9], 
and partially annotated using the ToBI (tones and break 
indices) prosodic annotation system [1]. We only used female 
speakers for experiments due to the data insufficiency of male 
speakers. In addition, because the examples of the pitch accents 
L*+H and L*+!H in BRNC are sparse, we only used the other 
four pitch accents for study. We also statistically computed the 
classification accuracy of pitch non-accent as a measure of the 
false detection of pitch accent. 

The duration of syllables was automatically derived with 
the help of the toolkit Perl [10]. Because the dictionary in the 
data package often defines a word with several pronunciations, 
we first retrieved the corresponding syllables for each word in 
an utterance according to the dictionary “.prn” file and the word 
labeling “.wrd” files. The obtained information on word-
syllable pairs was further compared with phoneme labeling (the 
“lbl” and “lba” files) to search for syllable boundaries. We 
found that some of the word labeling provided by the data 
corpus was not consistent with the phoneme labeling. The 
discrepancy of the word labeling and phoneme labeling was 
manually checked and corrected. We also used Perl to 
automatically annotate a syllable with pitch accent or non-
accent by looking into the tone labeling “.ton” files.  

The data corpus includes speech from 3 female speakers, 
totaling 208 minutes. We used clean speech that makes up to 
90% of the entire data corpus. We used approximately 78% of 
the clean speech for training, and used the other 22% for 
testing. The data set consists of 8160 pitch accented syllables 
and 24208 pitch non-accented syllables. The experimental 
results are summarized in Table 1. The TDRNN based on a 
feature means that the feature is used as the single input. The 
test results show that pitch is the most efficient feature, and the 
distributed TDRNN is more efficient than the normal TDRNN 
for pitch accent detection. 

 
Table 1: The classification accuracy of pitch accent and non-
accent using the prosodic and spectral features both alone and 
in combination.  

 Average 

(%) 

Accent  

(%) 

Non-accent  

(%) 

Pitch-based TDRNN 79.79 69.94 84.23 

Energy-based TDRNN 73.40 75.92 72.26 

Spectral balance-based 

TDRNN 

58.71 57.64 59.19 

Duration-based DRNN 53.51 85.18 39.21 

Normal TDRNN 81.21 68.27 87.05 

Distributed TDRNN 83.64 78.20 86.09 

 

4. Conclusions 

This paper presented a novel approach for the automatic 
detection of pitch accent in spoken English. The detection of 
pitch accent is significant for both speech recognition and 
language understanding since the pitch accented words usually 

contain new and important information. The approach that we 
proposed was based on TDRNN that combined the prosodic 
and spectral inputs and the context labeling information. We 
investigated both the normal TDRNN and the distributed 
TDRNN to pitch accent detection. The features used for pitch 
accent detection were pitch, intensity, duration and SBCC that 
were derived on the syllable level. We used BRNC as the data 
corpus for experiments on the gender-dependent and speaker-
independent pitch accent detection. The experimental results 
showed that pitch was the most efficient feature for pitch accent 
detection, and the distributed TDRNN outperformed the normal 
TDRNN in the classification performance. The accuracy 
reached as high as 78.2% for accent detection and 86.1% for 
non-accent detection. 
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