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Abstract 
We examined the extent of material required to build prosodic 
models for duration, fundamental frequency and intensity. 50 
multiple linear regression models were built for two MARSEC 
speakers on the basis of 70 utterances (7’522 and 7’643 
segments). Models based on 8 and 20 utterances showed 
closeness of fits comparable to those reported by other 
researchers for much larger corpora. Little systematic 
improvement was seen beyond 20 utterances. A predictor 
ranking procedure advantageously replaced the more 
commonly used regression trees. Results suggest that a series 
of well-adapted small-footprint models provide more accurate 
information about the individual use of prosody in specific 
speech situations than a single model based on abundant data1. 

1. Introduction 
Numeric prosodic models are generally used to classify and 
synthesize the fine details of language behaviour and they are 
frequently used to simulate speech behaviour over time. In 
such models, the size of the underlying database is an 
important issue. A model is underspecified if it is based on too 
little material. In this case the abstracted “rules” of the model 
do not generalize well to new material. Alternatively, a model 
can be overspecified if it is based on too much material and 
cannot reflect local variations in speech or speaker style. An 
optimal compromise between generalizability and local 
accuracy must thus be found. 

The issue is complicated by the fact that neither the 
prosodic parameters nor the segments or syllables to which 
they apply are evenly distributed in normal speech (the 
“sparse-data problem” [5], [17], [13]). The optimal 
compromise for a frequent parameter (e.g., f0) is thus not 
necessarily the same as that for a rarely-occurring parameter 
(e.g., a turn-taking signal). In the present study, we address 
this problem in two ways. First, we concentrate on the 
requirements for building models for the central and coherent 
three-parameter set of segmental duration (t), fundamental 
frequency (f0) and intensity (I). In the case of t and I, a 
parameter specification is required for every segment, and in 
the case of f0, a specification is required for every voiced 
segment. This assures a high frequency of occurrence and 
high local accuracy for the most common segments of the 
language. Second, the effects of underspecifying parameters 
for rarely occurring segments (e.g., /Z/ as in “measure” in 
English) are examined, as when predictors for infrequent 
values are interpolated or simply set to the mean value2. 

                                                 
                                                                            

1 This is a short description of a larger study [8]. Please refer to the 
main paper for details of methodology, illustrations and discussion. 
2 The sparse-data problem can be circumvented by using phonetically-
balanced reading material. However, that introduces other problems, 
such as inapplicability of the approach to spontaneous speech, a time-

To sum up, the desired compromise must satisfy three 
criteria: generalizability, local accuracy and optimal 
coverage. An approximation can be found by examining the 
evolution of the following three measures in models generated 
from databases of increasing size: closeness of fit of the 
model, capacity of prediction to novel material and coverage 
of segments. Our results indicate that at least for certain 
speakers reading prepared materials, an optimal compromise 
can be based on databases that are much smaller than those 
that are commonly used in numeric t-f0-I modelling. 

2. Method 

2.1. Data Preparation  

Corpus. Numeric prosodic models were built for two speakers 
with extensive materials in the Machine-Readable Spoken 
English Corpus (MARSEC3[10], [11]). Both are practiced 
adult speakers representative of the received-pronunciation 
(i.e., the prestige/regionally neutral accent) form of British 
English (RP). Materials were (1) one and a half news bulletins 
spoken by Brian Perkins (BP) a BBC-4 newscaster (the initial 
part of MARSEC section B, 70 utterances, 7’522 segments), 
and (2) a portion of the 1985 Reith Lecture presented by the 
economist David Henderson (DH) (the initial part of section 
C, 70 utterances, 7’643 segments). Punctuation was inserted 
into MARSEC’s text transcriptions at major tone group 
(“utterance”) boundaries. With a few exceptions motivated by 
semantics and syntax, such markers were recoded into 
appropriate periods, question/exclamation marks, and colons. 
Commas were set according to English punctuation rules. The 
acoustic material from the two speakers was phone-level 
segmented using a computer aided-technique of placing marks 
that are subsequently adjusted manually. 

Independent variables (IVs). On the basis of the written 
and punctuated texts adjusted for hesitations and speech 
errors, 19 linguistic predictors were obtained. Most of these 
have been shown to be of statistical relevance for the 
prediction of duration ([2], [4], [5], [6], [14], [15]): 
• Positional information (5)4: segment position in syllable, 
syllable position in word, word position in minor phrase, minor phrase 
position in major phrase, major phrase position in utterance). “Major 
phrases” were text segments delimited by sentence markers and by 
commas. “Minor phrases” were delimited by punctuation marks as 
well as boundaries between lexical and grammatical words, as defined 
below. Such position indicators have been shown to be of relevance 
for the prediction of duration for French [12], [6], [18], [19], and have 

 
consuming preparatory phase, and the common observation that 
desired phonetic features are either not pronounced by speakers or 
were forgotten or not foreseen in the constitution of the database. 
3 MARSEC is available from 
www.rdg.ac.uk/AcaDepts/ll/speechlab/marsec. 
4 In parentheses: number of IVs of this type. 

http://www.rdg.ac.uk/AcaDepts/ll/speechlab/marsec


also been successfully applied to German in our laboratory [16], as 
well as in various other languages (e.g., [1], [17], [3]). 
• Quantitative information (5): number of segments in 
syllable, syllables in word, words in minor phrase, minor phrases in 
major phrase, major phrases in utterance. 
• Segment boundaries (1): no boundary, syllable, lexical, 
minor phrase, major phrase, semicolon, period, question mark, 
exclamation mark and colon. 
• Phonemic segment identity and lexical stress (6): 
identity of preceding, current, and succeeding segments, lexical stress 
of preceding, current and succeeding segments. 
• Part-of-speech [POS] membership (2): the full POS 
classification according to the CUVOALD electronic dictionary, and a 
simplified POS, where the CUVOALD classifications G Anomalous 
verb (e.g., auxiliary), Q Pronoun, R Definite article, S Indefinite 
article, T Preposition, U Prefix, and V Conjunction were set to 
“grammatical word” and the rest of the Cuvoald POS classifications 
(nouns, full verbs and adjectives) were considered “lexical words”. 

Dependent variables (DVs). Prior to the extraction of the 
dependent variables, signals were denoised, enhanced, and 
converted to 16 kHz with Pristine Sound1 after low-pass 
filtering. DVs were as follows: (a) segmental t, (b) f0 
extracted at 500 Hz by Praat’s2 AC routine with default 
settings, except for a pitch ceiling of 250 Hz, and (c) I 
extracted at 500 Hz by Praat’s intensity routine, with 
minimum pitch set to 75 Hz. F0 and I curves were spot-
checked for abnormalities. For each segment, 10 equally-
spaced f0 and I values were derived from the extractions and 
mean values were stored for each segment. For ease of data 
manipulation, Praat’s interpolated f0 values were used for 
unvoiced segments, although physically no voicing occurred, 
and logically no f0 value could apply. Although this manner 
of proceeding bore the risk of depressing f0 prediction values, 
this was considered acceptable, since (a) this study focused on 
relative values and a depression in absolute predictions had no 
bearing on the interpretation of the results, (b) prediction was 
unaffected for segments for which voicing is audible, and (c) 
the ultimate reduction in prediction proved to be minimal (see 
below). Pauses were not modelled in this study. 

IV and DV information was aligned semi-automatically. 
For example, CUVOALD, used for generating the IVs, 
provides rhotic transcriptions (/kA:r/ for “car”), while the two 
speakers generally use non-rhotic pronunciations in the DV 
segmentations (e.g. /kA:/ for “car”). Since some r’s were 
pronounced, manual adjustments were needed to remove 
excess IV segment information. Similarly, some optional fast-
speech rules, such as the deletion of schwa in “finally” or of 
the second /t/ in “contract talks”, were performed manually. 
After each modification, IV positional and segment context 
was automatically updated to reflect the segments’ new status. 

2.2. Statistical Processing 

Before calculating multiple regressions on the IV-DV 
relationships, the following procedures were applied: 

(1) DV Linearization. Various power transformations 
were applied to the three DVs (log, square root, raw data, and 
power of 2), and the best linearizing transformation was 
chosen as judged by proximity to zero on a calculation of 
skewness. For both speakers, the best transformations were 
square root for segment t, log for f0, and power of 2 for I.  

(2) IV Ranking. For improved predictive accuracy, 
nominal IV distinctions were converted into ordinal IVs by 

                                                 
1 Available at http://www.accuratesound.net. 
2 Available for free at http://www.praat.org. 

placing average linearized DV values into IV predictor cells. 
E.g., the short vowel /I/ has an average duration of 58 ms for 
DH. Since this is a duration, 0.2409 (square root of 0.058 s) 
was placed in the duration-predicting IV cell for this segment. 
If a numeric IV value was absent from the corpus (e.g., if 
stress 0 and stress 2 were attested, but stress 1 was not), the 
interpolated value was taken. If a nominal IV was unattested 
but exists in the language (such as /Z/), the DV’s mean value 
was used. All IVs were re-coded in this manner, separately for 
each IV-DV relationship. 

This procedure permits ordinal predictors to be used 
instead of less powerful nominal or categorical predictors. To 
illustrate with an example from our previous studies, the best 
predictor of segmental t in French and German had been the 
segment’s phonemic identity (fricatives tend to be long, 
unaspirated stops tend to be short, etc.). Since we could not 
discover any articulatory or acoustic logic for ranking 
segment identities along the duration scale, our initial option 
had been to treat them as nominal elements. This was not very 
appealing, since one of the applicable mechanisms (regression 
with nominal values, as found in most statistics packages) was 
much less powerful than a regression with ordinal or scale 
values, and another (frequently-employed regression trees, 
e.g., [14][9]) required quite a bit more data, due to the sparse-
data problem. A multiple regression for the modelling of 
duration based on simple nominal values would explain only 
about 10-20% of variance, while regressions operating on 
DV-ranked data generally explain more than 50%, and 
sometimes as much as 79% of variance [19]. 

In our previous work, segment IVs were thus grouped into 
“duration groups” [6]. Zellner [19] proposed a grouping on 
the basis of purely quantitative criteria, a solution 
subsequently applied to German [16]. Although generally 
successful, this grouping of values also led to a certain loss of 
predictive power. Furthermore, a given grouping may make 
good predictions for one IV-DV relationship (e.g., the current 
segment identity – duration relation) but not for another (e.g., 
the relation between the identity of the preceding segment and 
current duration). The present study preserves the greatest 
possible predictive power by abandoning categorisation, by 
treating each IV-DV relationship separately, and by letting the 
data itself determine ordinal ranking of IVs instead of 
imposing groups preconceived on theoretical grounds. Also, 
the approach is generalized here to f0 and I. 

(3) Outliers, defined as data points lying two RMSEs or 
more above or below the predicted value, were examined and 
appropriate modifications were applied. The prediction model 
was recalculated after removal/modification of outliers. 

(4) Variable Pruning. After the calculation of an initial set 
of regressions for the two speakers, IVs showing 
multicollinearity were removed with the aid of the SSPS 
stepwise procedure. This assured orthogonality in predictor 
variables that are significantly related to DVs (p<0.05), thus 
stabilizing the regression coefficients. 

2.3. Evaluation and Precision 

(1) Statistical Evaluation. Model performance was 
measured by the correlation coefficient r, the root mean-
squared error (RMSE), and by bias, i.e., the degree to which 
the model under- or over-predicts target values. RMSE 
compensates for differences in corpus size and takes into 
account bias, which is left aside by correlation-based 



statistics. The examination of bias (a component of RMSE) 
can point up structural deficiencies in the model. 

(2) Synthesis Evaluation. A Hello World message and the 
British version of the Northwind Passage were synthesized on 
the basis of completed models using predictions for segmental 
t and f0 (not I). Four f0 values per segment were generated, 
and a cubic spline function was used to smooth the f0 curve. 
Pauses were simulated by static rules (end of major breaks: 
100 ms, utterance final: 600 ms). Segmental t’s were linearly 
lengthened by 5% to facilitate perception and judgement. 
Outputs were created with Mbrola and the “en1” diphone 
database1, and were denoised and filter band-enhanced with 
Pristine Sound before being converted to MP3. Sounds are 
available on the CD-ROM and at our website2. 

Figure 1. Correlations and RMSEs for 50 models of increasing 
domain, where model 1 is based on utterances 1...2, model 2 on 
utterances 1...3, and model 50 is based on utterances 1...51 (Subject 
BP). The stability estimates are similar for the two speakers, even 
though the model fits for BP are better than those for DH. 

(3) Precision. To assure requisite control over precision in 
the model-building process, human intervention was applied 
at five points: (1) identification of predictor variables, (2) 
segmentation of the acoustic signal, (3) alignment between 
the dictionary-and-rule-based and the actual segment 
sequence, and (5) stepwise selection of IV parameters. 

3. Results 

3.1. Model Fit for the Original Data 

50 models per DV were calculated over domains of increasing 
size, ranging from a model based two contiguous utterances (1 

and 2), through to the last model, calculated on the basis of 51 
utterances. Models were calculated separately for the two 
speakers’ t, f0 and I. Correlation coefficients and RMSEs show 
that the models stabilize rapidly beyond the fifth utterance, to 
attain approximate stability with the 20th utterance (Fig. 1). 
Estimates are similar for the two speakers, although model fits 
for BP are better than for DH. Measures for model 20 were as 
follows: (Speaker BP, N=1962) t, r = .735, p<.001, RMSE = 
24 ms, bias = 2.3 ms; f0, r = .502, p<.001, RMSE = 2.55 
semitones (16.7 Hz), bias = 1.24 Hz; I, r = .790, p<0.001, 
RMSE = 4.82 dB, bias = -0.17 dB. (Speaker DH, N=2331) t, r 
= .686, p<.001, RMSE = 28 ms, bias = 2.7 ms; f0, r = .294, 
p<.001, RMSE = 3.76 semitones (25.4 Hz), bias = 2.65 Hz; I, 
r = .721, p<0.001, RMSE = 5.56 dB, bias = -0.23 dB. 

Since the f0 model predicts values for both voiced and 
unvoiced segments even though unvoiced data were 
interpolated, a separate analysis was performed just for the 
voiced segments of model 20. It showed few if any 
improvements: correlations r’s for voiced segments (N=602) 
were .549 for BP (marginally better) and .294 for DH (N=742, 
unchanged), and RMSEs were 2.47 semitones (15.7 Hz) and 
3.6 semitones (24.2 Hz) respectively, both marginally better. 
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The relationship between bias and RMSE was examined 
to assess models’ over- or underestimation. Strong 
correlations between RMSE and bias (t: r=.906, f0: r=.988, I: 
r=-.904) indicated that bias accounts for nearly all of RMSE 
variation. However, percentages of RMSE accounted for by 
the bias component were not excessive (means of bias as a 
percent of RMSE for 50 models and the two speakers: t: 9.8% 
and 10.0%, f0: 7.3% and 10.2%, I: 3.5% and 4.0%). Models 
tended to underestimate duration and fundamental frequency, 
and overestimate intensity. This can in part be related to the 
physical and physiological nature of the scales involved. In 
normal speech, t is open-ended at the top but close-ended at 
the bottom, f0 shows more range above median activity than 
below, and I shows the inverse tendency. This is reflected in 
the relationship between the mean and the median, where BP, 
for example shows a median below the mean for t (median: 
48.6 ms, mean: 50.0 ms) and for f0 (median: 100.7 Hz, mean: 
102.2 Hz), but a median above the mean for I (median: 72.7 
dB, mean: 71.8 dB). Since RMSE variation reflects primarily 
bias and captures small over- and underestimations of the 
modelled data, the variations shown here probably correspond 
to the presence of excessive values in the data (confirmed by 
a visual inspection of raw and bias values [8]). 

As a final observation, t and f0 values for model 7, based 
on 8 utterances and 779 (BP) / 978 (DH) segments, showed 
especially encouraging performance. Also a hint of a 
“counter-effect” is visible around models 17 and 13 
respectively for those two parameters. A good short-term fit 
might thus be based on just 7-8 contiguous utterances. In 
contrast to the stable long-term model visible for utterance 
pools of 20+ utterances, the short-term model could well 
represent an optimum for capturing changing prosodic trends. 
This was borne out by sliding-window model fits for 70 
sentences [8]. In short-term models based on a sliding 8-
utterance window and longer-term models based on a sliding 
20-utterance window, 8-utterance models tended to fit the 
data somewhat better than the 20-utterance models, both in 
the sense of reflecting more local variation and by reducing 
the error term somewhat (exception: f0).                                                  

1 Mbrola: http://tcts.fpms.ac.be/synthesis/mbrola.html. “en1” by Alan 
Black, Paul Taylor, Roger Burroughs, Alistair Conkie, and Sue Fitt. 
2 http://www.unil.ch/imm/docs/LAIP/LAIPTTS_pros_footprint.htm. 

http://tcts.fpms.ac.be/synthesis/mbrola.html
http://www.unil.ch/imm/docs/LAIP/LAIPTTS_pros_footprint.htm


3.2. Modelling Novel Data 

The models’ ability to generalize to novel speech material 
was examined by training 8- and 20-utterance models on the 
two speaker’s initial utterances in the corpus and by applying 
predictions to utterances numbered 21-70. Correlations and 
RMSEs were calculated between predicted and measured 
values obtained from the original files [8]. 

Model fits for the novel data were somewhat weaker than 
for the original data and were quite variable, but still in the 
useful range (r’s for t .63-.73, for f0 .35-.55 (BP) / .15-.45 
(DH), and for I .66-.80). RMSEs were much less correlated 
with bias (rt = .460, rf0 = .415, rI = .049, average of two model 
types and both subjects), suggesting a different source of 
variation (e.g., variation in data set concordance). In line with 
BP’s better-fitting models for the original data, BP’s models 
had generally stronger predictive power than models based on 
DH’s material. Models based on twenty utterances furnished 
only marginally better predictions than those based on eight 
utterances (an average of 1.3% improvement for correlations 
and an average of 0.9% improvement for RMSEs). 

3.3. Segment Coverage 

Missing data were calculated for the Northwind Passage on 
the basis of 8- and 20-utterance models. Interpolated missing 
numeric IVs (e.g., stress levels) accounted for 5% (BP) and 
3.5% (DH) in the 8-utterance models, and for 1.4% and 2.1%, 
respectively, of the 20-utterance models. No average values 
needed to be substituted for missing nominal IVs (e.g., 
segments). It may be concluded that missing data did not play 
a major role in the present data set. 

4. Conclusion 
In conclusion, statistical and perceptual evaluations of t-f0-I 
prosodic models for news and lecture material suggest that an 
8-utterance (<1000 segment) model can probably furnish 
useful short-term information, while a still very compact 20-
utterance model can provide a stable estimate of longer-term 
behaviour. Synthesis results suggested that (1) there are few 
differences between models based on eight and twenty 
utterances, with the exception of f0 prediction, (2) the better-
fitting models based on BP’s speech did appear to sound a bit 
better than those based on DH’s speech material, particularly 
with respect to f0, and (3) some of the stylistic differences 
between BP’s and DH’s prosody could be identified in the 
synthesis by listeners familiar with the speakers’ speech 
patterns, notably DH’s considerable f0 modulations. 

RMSEs for duration in our two speakers ranged from 
about 21-29 ms. Klabbers [9], p. 70, using classification trees 
established on the basis of phonetic principles, reported 
duration RMSEs ranging from 19 to 27 ms on the basis of 
much more data (Dutch RMSE 27 ms, 12’948 segments, 
German RMSE 19 ms, 24’240 segments, and French RMSE 
25 ms, 7’143 segments). We saw that beyond the 20th 
utterance, the variable of greatest impact was not the size of 
the data set, but the selection of the speaker (e.g., mean 
duration RMSEn=8 for BP: 24.0 ms, DH: 26.5 ms). 

Further improvements to this class of model can be 
expected from (1) the definition of additional and stronger 
IVs, (2) the modelling of interactions, (3) improved handling 
for missing data, and (4) using non-linear methods (such as 
neural nets) for prosodic parameters with strong non-linear 
components (such as f0) [8]. 
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