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Abstract

In this paper, a co-channel multi-pitch detection algorithm is
described. We suggest the importance of this when prosodic in-
formation is need to be extracted separately from respectiveF0

patterns of concurrent utterances. Though temporal continu-
ity of speech prosody should be considered, we discuss a pro-
cess done independently on each single frame as the first step.
A model of multiple harmonic structures is constructed with a
mixture of tied Gaussian mixtures with which a single harmonic
structure is modeled. Our algorithm enables to detect both a
number of concurrent speakers, and each spectral envelope of
underlying harmonic structure based on a maximum likelihood
estimation of the model parameters using EM algorithm and an
information criterion. It operates without a priori information
of F0 contours and a restriction of a number of speakers, and it
also extracts accurateF0s as continuous values with simple pro-
cedures in spectral domain. Experiments showed our algorithm
outperformed well-known cepstrum for both speech signals of
a single speaker and simultaneous two speakers.

1. Introduction
It is known that prosodic information offers many useful clues
for speech recognition, such as location of important words
and phrases, topic segment boundaries, location of disfluencies,
identification of languages and others. The process of extracting
prosodic information is generally conducted on the assumption
thatF0 pattern is already (roughly) extracted. YetF0 patterns
can not always be extracted simply in spontaneous dialogue
speech in which simultaneous utterances by two or more speak-
ers often occur. Thus, in order to incorporate proper prosodic
information into spontaneous dialogue speech recognition, a
number of simultaneous speakers and respectiveF0 patterns are
desired to be extracted precisely. However, the multi-pitch de-
tection problem is hardly simple and is difficult to be solved
analytically.

Until now, numerous multi-pitch detection methods have
been reported not only in speech signal processing [1, 2] but
also in musical signal processing[3, 4, 5] and auditory scene
analysis [6, 7]. Chazan et al. addressed a speech separation
method by introducing a time warped signal model which al-
lows a continuous pitch variations within a long analysis frame
[1]. Wu et al. described a multi-pitch tracking method in noisy
environment by filter bank process and pitch tracking using
HMM [2]. Although these methods actualize an accurate de-
tection ofF0s, either of them does not include specific process
of determining the number of speakers.

Our objective is to develop a multi-pitch detection algo-
rithm which enables to detect the number of simultaneous

speakers, the accurateF0s as a continuous values, and more-
over, respective spectral envelopes with spectral domain proce-
dure. The basic approach is stated in Section 2, and the de-
tection algorithm is described in Section 3. And the results of
operation experiments are reported in Section 4.

2. A Maximum Likelihood Formulation
2.1. Model of Harmonic Structures

An influence of a window function and a varying pitch within
the short time single analysis frame inevitably cause widening
of the spectral harmonics which makes it difficult to extract
the precise value ofF0s and to separate close partials. First
we assume that each widened partial is a probability distribu-
tion of frequencies, approximated by a Gaussian distribution
model. Therefore, a single harmonic structure can then be mod-
eled by a tied Gassian mixture model (tied-GMM), in which
their means have only 1 degree of freedom. In log-frequency
scale, means of tied-GMM are denoted here as�k= {µk, · · · ,
µk +log n, · · · , µk+log Nk} whereµk ideally corresponds to
thelog F0 of kth sound andn denotes the index of partials. We
then introduce a model of multiple harmonic structuresPθ(x)
which is a mixture ofK tied-GMMs whose model parameter�
is denoted as

{θ} = {�k,wk, σ | k=1, · · · , K}, (1)

wherewk = {wk
1 , · · · , wk

n, · · · , wk
Nk
} and σ indicate the

weights and variances (which are briefly assumed here as a con-
stant) of the respective Gaussian distributions.

2.2. Model Parameter Estimation using EM Algorithm

Since the observed spectral density functionf(x), wherex de-
notes log-frequency, is considered to be generated from the
model of multiple harmonic structures, the log-likelihood dif-
ference in accordance with an update of the model parameter�
to �̄ is

f(x) log Pθ̄(x)− f(x) log Pθ(x) = f(x) log
Pθ̄(x)

Pθ(x)
. (2)

Although Dempster formulated EM algorithm [8] in order to
maximize the mean log-likelihood consideringf(x) as a proba-
bilistic density function, it can also be formulated in a same way
even iff(x) is replaced with spectral density function. By tak-
ing expectation of both sides with respect toPθ(n, k|x) which
represents the probability of the{n, k}-labeled Gaussian distri-
bution from whichx is generated,Q-function will be derived in
the right-hand side. GivenQ-function as

Q(θ,θ̄)=

KX
k=1

NkX
n

Z ∞

−∞
Pθ(n,k|x)f(x) log Pθ̄(x,n,k)dx, (3)



thus it yieldsZ ∞

−∞

�
f(x) log Pθ̄(x)− f(x) log Pθ(x)

�
dx

≥ Q(θ, θ̄)−Q(θ, θ). (4)

By obtaining θ̄ which maximizes theQ function, the log-
likelihood of the model of multiple harmonic structures with
respect to everyx will be monotonously increased. A posteriori
probabilityPθ(n, k|x) in equation (3) is given as

Pθ(n, k|x) =
Pθ(x, n, k)

Pθ(x)
, (5)

=
wk

n · g(x|µk+log n, σ2)X
n

X
k

wk
n · g(x|µk+log n, σ2)

, (6)

g(x|x0,σ
2) =

1√
2πσ2

exp

�
− (x− x0)

2

2σ2

�
, (7)

whereg(x|x0,σ
2) is a Gaussian distribution. By the iterative

procedure of the two steps as follows, the model parameter�
locally converges to ML estimates.

Initial-step
Initialize the model parameter�.

Expectaion-step

CalculateQ(θ, θ̄) with equation (3).

Maximization-step

MaximizeQ(θ, θ̄) to obtain the next
estimate

� = argmax
θ̄

Q(θ, θ̄). (8)

Replacē� with � and repeat from the
Expectation-step.

2.3. Another Interpretation as Clustering

From another viewpoint, this ML procedure can be understood
as a clustering method under a harmonic constraint between
Gaussian mixture components where spectral density function
is considered as a statistical distribution of micro-energies along
frequency axis. As we regardµk as cluster centroids, the a pos-
teriori probability in equation (6) as a membership degree of
each micro-energy and the log-likelihoodPθ̄(x, n, k) as a dis-
tance function between centroidµk and a micro-energy, thus the
Q function in equation (3) turns out to be the objective function
for fuzzy clustering. We call this concept “Harmonic Cluster-
ing.”

3. Multi-pitch Detection Algorithm
The detection algorithm as a whole consists of two processes. In
3.1, we adopt one of the most widely used information criterion
on which both processes described in 3.2 and 3.3, are based.

3.1. Criterion of Model Selection

Provided multiple different model candidates exist, the optimal
model must somehow be judged. Here we introduce Akaike
Information Criterion (AIC) which was proposed by Akaike in
1973 [9]. AIC is given by

AIC =−2×(maximum log-likelihood of model)
+2×(number of free parameters of model), (9)

whose minimum offers a proper estimate of the number of free
parameters.
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Figure 1:An example of convergence to the true values
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Figure 2:Input spectrum for Figure 1

3.2. Detection of the number of speakers

It is generally known that ML estimates obtained by EM algo-
rithm firmly depend on initial values and may often converge to
undesirable values. To avoid this, we first prepare extra amount
of tied-GMMs in the model in order to raise possibility of ob-
taining the true values. Then, obviously, the model may over-fit
the given observed specrum. If one Gaussian is enough for ap-
proximating the shape of one partial, the same number of under-
lying harmonic structures must be enough with the tied-GMMs.
And this number can be detected by reducing tied-GMM one
after another until they become the proper number on the basis
of AIC. The specific operation is as follows:

1. Set initial values of{µ1, · · · , µK} in the limited fre-
quency range.

2. Estimate the ML model parameters by EM algorithm.
However,wk

n is constrained here as

wk
1 = wk

2 = · · · = wk
Nk

(= wk). (10)

This wk represents the degree of predominance ofkth
tied-GMM. In Maximization-step, model parametersµk

andwk should be updated to

µ̄k =

NkX
n=1

Z ∞

−∞
(x− log n)Pθ(n,k|x)f(x)dx

NkX
n=1

Z ∞

−∞
Pθ(n, k|x)f(x)dx

, (11)

w̄k =
1

FNk

NkX
n=1

Z ∞

−∞
Pθ(n, k|x)dx, (12)



whereF is an integral off(x) with respect tox.

3. Calculate AIC with equation (9). Since there are two free
parameters for each tied-GMM, the model has2×K free
parameters altogether. If the AIC increases, the number
of tied-GMMs just before they are reduced in step4 will
be the estimate of the number of harmonic structures.

4. Remove the tied-GMM(s) which conforms either of the
two conditions as below and repeat from step 2.

• The one whosewk is the minimum among all.
Since the contribution to the maximum log-lik-
elihood must be the least.

• The one whosewk is smaller if the two adjacent
representative means become closer than a certain
distance (threshold). Since the two representative
means are presumed to converge to the same opti-
mal solution.

An example of how this process actually works is shown in
Fig.1 where the observed spectrum used is depicted in Fig.2.
The broken line represents the point where the model parame-
ters were judged to be converged and the circled value indicates
the value of AIC at each point. Since AIC takes minimum when
3 tied-GMMs remain, the detected number here is3.

3.3. Detection ofF0s and Spectral Envelopes

In the previous process, the ML procedure allows to aqcuire lo-
cal optimal solutions ofµk without distinction of the trueF0s
or the multiples of the trueF0s. Therefore, the trueF0s must
somehow be discovered by replacingµk each by each to their
multiples. Consider now that a degree of freedom is given to ev-
erywk

n and consequently allows to extract the spectral envelope,
i.e., the relative amplitudes of the partials. Ifµk is lower than
the trueF0, the model must be over-fit. From this point of view,
the problem of obtaining the trueF0s and the spectral envelope
can also be handled with the information criterion. The process
shown below is done with all remaining tied-GMMs after the
previous process.

1. Replace the representative means toµk+log t wheret is
an integer number whose initial value is 1. The number
of Gaussians limited below the Nyquist log-frequency is
denoted asN t

k.
2. Estimate the ML model parameters by EM algorithm.

Here we only updatewk
n and should be updated to

w̄k
n =

1

F

Z ∞

−∞
Pθ(n, k|x)dx. (13)

3. Calculate AIC with equation (9). The number of free
parameters here isN t

k. If the AIC increases, the process
should be interrupted and theµk+log(n−1) is considered
as the detectedF0, and if not, add1 to t and return to
step1.

4. Experiments
Experiments were carried out to validate our algorithm by eval-
uating the accuracy ofF0 detection in comparison with well-
known cepstrum. A database of every speech file and reference
F0 contour are constructed from the ATR Speech Database. All
signals were digitized at12 kHz sampling rate and analyzed
with Hamming window where frame length and shift were 64
ms and 10 ms, respectively. The initial number of the tied-
GMMs was set to4 and the frequency range was from70 Hz
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Figure 3:DetectedF0 contour of a single speaker
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Figure 4:ReferenceF0 contour corresponding to Figure 3

Table 1:Results for a single speaker

Accuracy(%)
Speech file Cepstrum Proposed

‘myisda01’ 88.2 98.0
‘myisda02’ 88.4 99.0
‘myisda03’ 84.8 98.1
‘myisda04’ 85.1 92.4
‘myisda05’ 76.8 93.7
‘fymsda01’ 86.3 98.5
‘fymsda02’ 87.1 97.5
‘fymsda03’ 83.3 95.8
‘fymsda04’ 86.7 96.8
‘fymsda05’ 85.2 96.0

to 140 Hz, andσ was assigned to0.45. Speech files begin with
‘myi-’ and ‘fym-’ stand for speech signals of a male and a fe-
male speakers. Deviations over5% from the references were
deemed as gross errors. Every accuracy shown in table 1, 2 and
3 is a percentage of frames at whichF0s are correctly detected.

4.1. Results for Speech Signals of a single speaker

The algorithm was first tested on single-channel speech signals
of a single speaker. A comparison of accuracies between cep-
strum and proposed method for each speaker are shown in table
1. As the results, our algorithm significantly outperforms cep-
strum. An example of detectedF0 contour is depicted in figure
3 where the reference is shown in figure 4.

4.2. Results for Simultaneous Speech Signals

The algorithm was next tested on co-channel simultaneous
speech signals spoken by two speakers. Each speech signal file
was artificially created by mixing two independent speech sig-
nals with0 dB signal-to-signal ratio. To evaluate our algorithm
objectively, we also applied cepstrum for simultaneous speech
signals which is not generally designed as a multi-pitch detec-
tor. Results with cepstrum are shown in table 2 and results with
our algorithm are shown in table 3. An example of detectedF0

contours is depicted in figure 5 where the reference is shown
in figure 6. Pairs of speech files by which concurrent speech
signals are created are shown in the first and second columns in
table 2 and 3. As the results, our algorithm significantly outper-
formed cepstrum as well and showed high performance.

Some of the gross errors were found at the first process
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Figure 5:DetectedF0 contours of two concurrent speakers
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Figure 6:ReferenceF0 contours corresponding to Figure 5

Table 2:Results for two speakers (Cepstrum)

Speech files Accuracy(%)
File 1 File 2 Speaker 1 Speaker 2

‘myisda01’ ‘myisda03’ 63.7 63.1
‘myisda01’ ‘myisda04’ 45.7 51.6
‘myisda02’ ‘myisda03’ 63.3 50.1
‘myisda02’ ‘myisda04’ 59.4 42.1

‘fymsda01’ ‘fymsda02’ 57.7 54.0
‘fymsda01’ ‘fymsda04’ 53.1 41.0
‘fymsda02’ ‘fymsda03’ 52.9 59.6
‘fymsda02’ ‘fymsda04’ 64.9 64.7

‘myisda01’ ‘fymsda03’ 45.7 43.0
‘myisda02’ ‘fymsda05’ 55.0 44.5
‘myisda03’ ‘fymsda04’ 41.4 59.9
‘myisda04’ ‘fymsda02’ 64.9 50.6
‘myisda05’ ‘fymsda03’ 59.4 62.8
‘myisda04’ ‘fymsda01’ 62.0 71.7

Table 3:Results for two speakers (Proposed)

Speech files Accuracy(%)
File 1 File 2 Speaker 1 Speaker 2

‘myisda01’ ‘myisda03’ 90.1 83.0
‘myisda01’ ‘myisda04’ 92.8 81.3
‘myisda02’ ‘myisda03’ 88.2 85.7
‘myisda02’ ‘myisda04’ 84.4 87.6

‘fymsda01’ ‘fymsda02’ 90.7 84.3
‘fymsda01’ ‘fymsda04’ 85.3 82.6
‘fymsda02’ ‘fymsda03’ 79.2 90.3
‘fymsda02’ ‘fymsda04’ 86.2 92.6

‘myisda01’ ‘fymsda03’ 76.1 84.9
‘myisda02’ ‘fymsda05’ 74.8 92.8
‘myisda03’ ‘fymsda04’ 72.6 88.4
‘myisda04’ ‘fymsda02’ 86.3 85.5
‘myisda05’ ‘fymsda03’ 78.0 86.6
‘myisda04’ ‘fymsda01’ 79.0 86.6

mainly because of unvoiced consonants. Since we focused only
on harmonic structure, the gross errors caused by them were dif-
ficult to avoid. Meanwhile, when the two simultaneous speak-
ers were male and female, male rather resulted worse. At the
second process stated in Section 3, AIC rather prefersµk to be
positioned in as higher frequency as it can because the number
of free parameters can be lessen. Accordingly, if both pitch and
amplitude of one utterence was specificially lower than another,
it tended to be ignored.

5. Conclusions
We proposed an algorithm which enables to detect the num-
ber of speakers, accurateF0s and spectral envelopes from co-
channel input simultaneous speech signals with spectral domain
procedure. It showed a high performance for speech signals of
both single speaker and two speakers. Still, several improve-
ments are prospective by considering temporal continuity ofF0

contour (e.g., introducing Fujisaki model), incorporating vari-
ance into the model parameters also as a variable or by intro-
ducing a priori probability distribution of the model parameters,
etc.
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