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Abstract 
In this paper an adaptable acoustical architecture in a multi-
lingual TTS system is presented. The whole architecture is 
designed to be a data-driven system. Modules comprising text 
preprocessing, grapheme-to-phoneme conversion, lexical 
stress detection, OOV-handling, symbolic prosody prediction, 
acoustic prosody prediction and unit selection with 
concatenation use machine learning techniques especially 
neural networks (NN) or language independent routines. The 
adaptable and scaleable architecture of the acoustic prosody 
generation module is built up by four sub-modules. While 
duration control uses a NN designed on the modified causal 
error correction architecture (CRCECNN), f0-generation 
utilizes a MLP NN. Within both NN modeling a partially 
Weight Decay (p-WD) method is applied to optimize each 
input vector dimension of the NNs. The p-WD method helps 
to select one of the highly correlated features in contrast to 
standard weight decay; hence through its penalty function we 
achieved a minimized input feature set. By the use of the third 
sub-module, which reuses the predictions of the optimized 
NNs, a hybrid architecture is established, as unit selection 
based on syllable prosody parameter criterions combines 
prosody selection with unit selection. Handling with a limited 
database makes a post processing unit necessary. We’ll 
emphasize the problem of finding optimal speech segments 
and an approach of segment selection using a global param-
eterized non-linear suitability function in combination with a 
modified multi-level Viterbi search algorithm. Preliminary 
acoustic ratings of the adapted TTS system to Slovenian lan-
guage will be introduced. 

1. Introduction 
Automatic learning techniques offer a solution in adapting a 
TTS system to a new language, voice or a new application. 
They allow automatic extraction of specific features (e.g. 
non-uniform unit selection, prosodic regularities extraction) 
from an appropriate database of natural speech. Such tech-
niques depend on the construction of a large preprocessed 
corpora (properly segmented, labeled with appropriate sym-
bolic prosody labels, etc.). The preprocessing and labeling 
can be performed either automatically or by hand. While 
automatic labeling can be less accurate than hand labeling, 
the latter is very time consuming (and in some tasks also 
inconsistent). However in some processes, such as segmen-
tation to non-uniform units, which are crucial for concatena-
tive TTS synthesizers and verification of automatically la-
beled data, expert guided procedures cannot be avoided. On 
the other hand, many adaptation tasks can be realized auto-
matically or semi-automatically. We will introduce methods 
used to adapt the acoustical part of a multilingual TTS system 

to Slovenian language. Therefore in the following sections the 
module for acoustic modeling will be disseminated. 

We’ll introduce the neural network (NN) structures suit-
able for adaptation to a new language without language ex-
pertise. The implementation of a modified weight decay 
method to overcome the known overfitting problem in the 
process of NN learning which considerably reduces the diffi-
culties of data-driven adaptation will be applied. The pro-
posed method is based on soft input pruning, fading out the 
unimportant inputs. The so-called p-WD was implemented in 
the f0-generation module. Also the module for duration mod-
eling of concatenation segments will be presented. The modi-
fied causal retro-causal NN will be introduced and the re-
moving training connection procedure explained. We’ll also 
introduce the unit selection module, which is based on a 
modified multilevel Viterbi-search algorithm. Because of the 
limited database used for adaptation also the implemented 
post processing method will be introduced. 

2. The database 
The database (corpus) used for prominence modeling consists 
of app. 1200 sentences in the Slovenian language (approx. 
three hours of speech). The selection of the text was empha-
sized for the broad coverage of sentences in the Slovenian 
language with the main concern towards the best coverage of 
concatenation segments. 

The audio database recordings were created in a studio 
environment with a male speaker reading aloud isolated sen-
tences in the Slovenian language (44.1 kHz, 16 bit). 

The whole corpus was designed using a selection of 
clauses from a 31 million word corpus in the Slovenian lan-
guage. The major parts of the clauses covered daily-published 
news and Slovenian literature; the minority consisted of 
clauses taken from Slovenian poetry. 

First, sentences not shorter then 15 and not longer than 25 
words were preselected from the major corpus. Then, four 
different text corpora were generated and analyzed statisti-
cally (approximately 5000 sentences per corpus). The selec-
tion of sentences for the final corpus (database) was based on 
a two-stage process. In the first stage an analysis based on 
statistical criteria was performed. In the second stage the final 
text was chosen based on the results of the first stage. In the 
final database 1200 sentences remained. 

The phonetic transcription was managed using a two-step 
conversion module. The first step is realized with a rule-based 
algorithm. The second step was designed with a data-driven 
approach (NNs were used) [2]. 

Pronunciation was derived from the IPA Alphabet. In or-
der to represent the IPA symbols in ASCII characters the 
SAMPA format was widely used. In our grapheme-to-pho-
neme conversion module the SAMPA phonetic transcription 
symbols for the Slovenian language were used [9]. 



The text corpus was hand-labeled using 13 different 
classes of part-of-speech tags (POS). All tags were combined 
in an environment where tracking and correcting tags was 
simplified for the labeler [3]. 

The spoken corpus was phonetically transcribed using 
HTK. Entities “sil” and “sp” (short pause) respectively, de-
noting the silence before and after a sentence and between 
words were determined with a one-state HMM and all pho-
nemes with three-state HMM in the HTK environment. 

3. The acoustic modeling architecture  
In the following the four modules constituting the adaptable 
acoustical architecture in the used multilingual TTS system 
PAPAGENO will be briefly explained (Figure 1). 

3.1. Duration modeling 

The NN depicted in Figure 2, utilizes shared weights and fi-
nite unfolding. The coupling of both information flows is re-
alized by only one output cluster zt instead of the coupling at 
each time step within CRCECNN [4]. By coupling those 
information flows within the present time step this new ar-
chitecture does not contain fix-point recurrent loops, which 
might cause instabilities during training. In the following this 
architecture will be used for further adaptations applying 
structural switching. 

During training all segmental durations modeled as obser-
vations are known. But within the application there are no 
observations available for i ≥ 0, because they are not pre-
dicted yet. For i < 0 predictions of the NN are re-utilized as 
observations. Because of this mismatch between training and 
application the retro-causal information flow has to be treated 
in a specific way. We approached to the problem with two 
modified architectures. The approach using the asymmetric P-
CRCECNN combined with the procedure of removing con-

nections after training showed the best result [4]. For training 
the same architecture is used as depicted in Figure 2. The 
dotted connections CR and DR are trained. So the basic archi-
tecture remains the same during training, but within the ap-
plication connections CR and DR are removed. The resulting 
architecture is then a finite unfolding in time without the error 
correction principle for the retro-causal information flow 
during application. 

In the following the application of asymmetric P-
CRCECNN’s within the segmental duration control unit of 
our acoustic prosody NN module is presented. The used data-
driven methods are applied to recordings of approx. three 
hours of a Slovenian database as already described (section 
2.1 The corpus) [8]. The used database (cf. section 2) is the 
same as applied within the f0-generation task. The f0-gen-
eration task utilizes patterns organized on syllable level – 
within this task, patterns are organized on triphone level. 

The following information (extracted from the database) 
is presented to the NN input in a context of seven phonemes 
to the left and right:  
• Phonetic information: with one-out-of-n coding the pho-

neme index is presented here. A phoneme-set of 45 pho-
nemes is used. Additionally the four phoneme classes 
(vowel, fricative, nasal, liquid, and plosive) are presented . 

• Positional info. discrete info.: denotes whether the accord-
ing syllable is an initial, medial or final one within the 
phrase and the word. Continuous info. is given by the 
relative syllable position within a sentnce and phrase. 

• Stress info.: flags denoting the stress type of the according 
syllable are coded here. Four flags present word level 
stress. Sentence level stress consists of two stress marks 
(predicted in a separate module). 

• Ling. cat.: a one-out-of-n (set of 13 categories) coded lin-
guistic category part-of-speech (POS) denotes the category 
type of the according word. 

All listed input categories are presented at each time step of 
the unfolding clusters denoted by ut+1 (Figure 2). The accord-
ing output vectors are modeled as observations and are pre-
sented at each time step in the clusters denoted by yd

t+1. Tar-
get values for the NN are normalized to ensure an optimized 
signal-flow during training of the NN due to tanh activation 
function within the causal and retro-causal state clusters. A 
first normalization of segmental duration is obtained by the 
mean and standard deviation value from the used triphone 
classes. A second normalization was necessary to ensure an 
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Figure 1: The adaptive acoustical architecture of the 
multilingual TTS system. 

 

Figure 2: The architecture of P-CRCECNN. Indices R 
denote the Retro-Causal-Modeling-Path. 



optimized signal flow during training of the NN. The mean 
and standard deviation were derived from the first normalized 
segmental durations. 

In the adaptation procedure the patterns for training 
(80%) and testing (20%) were separated. A validation set of 
(20%) was selected randomly from the training set. For 
evaluation the trained NN were used to predict segmental du-
rations of sentences that were in the test set. 

3.2. F0-contour generation 

The p-WD [5] has been applied to the f0-contour genera-
tion module. The utilized NN has to map input parameters to 
an appropriate f0-contour. Regarding the syllable the map-
ping is performed to four f0-contour parameters (Figure 3). 
The solid line depicts a f0-contour on the syllable level. 
These contours are parameterized (dashed line) by four val-
ues: f0-maximum (p1 = F0MAX), f0-maximum position (p2 = 
F0MAX_POS), f0 at syllable start (p3= F0START), and f0 at sylla-
ble end (p4= F0STOP). For the contour parameterization a 
maximum based description is used, which mainly defines 
that f0-contours on syllable level for non-tonal languages can 
be described by a rising on the first part and a falling on the 
second part of the syllable [6]. 

The mentioned parameters p1, p2, p3, and p4 are the out-
puts y = {p1, p2, p3, p4} of the NN respectively. Hence the 
dimension of the output cluster m = 4. 

F0-contours are known to be influenced by long-term 
features (the sentence type), breath and local stress intention. 
The input parameters must contain information concerning 
local and global characteristics (symbolic prosody tags). For a 
good mapping it is also important to provide contextual in-
formation of the syllable. Due to computation reasons the 
context window length was chosen to be seven to the left 
(past) and seven to the right (future) of the syllable with the 
exception of the linguistic categories. The following input 
features are presented to the NN to solve this problem on the 
syllable level for each context unit: 
• Phonetic information: The phonetic structure of a syllable 

to be processed is coded here. The vowel is presented as a 
one out-of-n coded input using the Slovenian SAMPA 
phoneme set. Neighboring phonemes of the vowel are 
given in four classes (plosive, fricatives, nasal and liquids) 
and also as a one-out-of-n coded input in a symmetric 
context window of four phonemes. 

• Positional info.: Continuous pos. information gives time 

distances of the syllable and its vowel. Discrete info. de-
notes whether this syllable is an initial, medial or final one 
within the sentence, the phrase, and the word. 

• Stress info.: Flags denote the stress type of a syllable 
within the word and the phrase. 

• Ling. cat.: The used linguistic category set consists of 13 
tags, which are one-out-of-n coded and presented in a 
context of 3 to both sides. 

Hence by this input constellation the input dimension of x is 
in the range between 500 and 600 (e.g. 560). The p-WD tech-
nique was applied to recordings of three hours of a Slovenian 
news speaker reading isolated sentences from a large corpus 
as described in the foregoing section (cf. section 2 The 
database). 

The patterns for training (80%) and testing (20%) were 
separated. A validation set of (20%) was selected randomly 
from the training set. The introduced parameter p in the 
weight decay penalty term of p-WD was optimized by ex-
periments with varying parameters p. This tuned NN module 
was then used to analyze the inputs and optimize the input 
feature selection. 

3.3. The unit-selection module 

The unit selection module within the introduced multilingual 
TTS system uses a robust unit selection method based on syl-
lable prosody parameters optimization (RUSSPP) [7]. 

First isolated NN predictions of f0-contours and segmen-
tal durations are performed and then these parameters are re-
utilized for a search in speech data (corpus) for best fitting of 
speech segments and acoustic prosody parameters. This 
search is realized by using a modified Viterbi-algorithm that 
operates on syllable level using syllable level optimality cri-
terions. But it explicitly allows higher and lower levels of 
speech segments in the path search procedure. 

3.4. The module for post-processing 

Dealing with limited speech data (segments) for synthesis 
makes signal processing on speech elements at concatenation 
points unavoidable. Therefore we used simple but efficient 
post-processing on the selected segments prosody parameters. 
This new method was already applied and tested within the 
TTS system PAPAGENO for German (male news speaker) 
[7]. It could be shown that it improves the quality of the used 
prosody generation module and of the selection process. 

It was observed that the used NNs are giving good pros-
ody modeling results within macro prosody. Therefore the 
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Figure 3: Maximum based parameterization of f0-con-
tours. 
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Figure 4: NN structure for f0-contour modeling. 



general idea of this post-processing is a realignment of the 
obtained f0-contours according to the run of the f0-maxima of 
the triangles as depicted in Figure 3. 

After the post-processing, the f0-contours are then real-
ized by modifying the speech-elements using a PSOLA like 
algorithm for speech synthesis. 

4. Experiments 
The acoustical results of our adapted multilingual TTS 

system were presented to a group of 20 non-expert listeners. 
We generated an inventory of 216 test sentences not used for 
the training or validation process.  

We additionally implemented a module for symbolic 
prosody tags prediction into the architecture of acoustic mod-
eling. The selective prediction method used essentially con-
tributed to naturalness of the synthesized speech without 
influencing the intelligibility of synthesized sentences. 

The test performed during 3-hour session (approx.) indi-
cates that the adaptable acoustic architecture used in the ap-
proach of adapting a multilingual TTS to Slovenian language 
(based on adaptable NN architectures) is suitable and prom-
ising for multilingual speech synthesis. During the listening 
test each sentence was estimated with marks from 1-5, with 5 
denoting the acoustically most pleasant sentence and 1 re-
served for unacceptable ones. The average ratings (the vari-
ances and ratings for each test person are presented in Figure 
5) were good-very good (3,276995). 

5. Conclusion 
In the foregoing sections we introduced an adaptive and 

scaleable architecture for acoustic prosody generation in a 
multilingual TTS system. By using only the NN predictions 
without the prosody selection and post-processing the archi-
tecture might be scaled down.  

 In the introduction we briefly explained the design of a 
suitable database used for adaptation of all modules in the 
TTS system. In more detail we explained the designed adapt-
able acoustical architecture combined of four modules. The 
first module introduced was the duration control NN module. 
We emphasized its basic structure with the new p-WD 
method applied. By its penalty function we achieved a mini-
mized input feature set. The NN duration control module 
introduced uses the modified causal retro-causal error cor-
rection architecture (P-CRCECNN).  

Considering time-dependency-structures is crucial for dura-
tion control task. By this architecture this a priori knowledge 
is explicitly modeled. Without the finite-unfolding technique 
it is not possible to consider the time-dependent-information-
structures. 

The performed acoustical experiments confirmed the 
suitability of the P-CRCECNN as an adaptable architecture. 
We observed the acoustic suitability for German as well as 
for Slovenian solving first the duration control task and af-
terwards the f0-generation task which helps avoiding prob-
lems caused by the strong influence of duration control on f0-
generation. 

We also introduced the module for unit selection using a 
new selection method (RUSSP) which is based on prosody 
parameters optimization. The problem of finding optimal 
speech segments was also emphasized. 

We proposed an approach of segment selection using a 
global parameterized non-linear suitability function in 
combination with a modified multi-level Viterbi search 
algorithm. The preliminary acoustical tests confirm the 
suitability of the designed architecture for adaptation to a new 
language and encourage the use of the selective symbolic 
prosody tags for a more subtle prominence modeling. 
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Figure 5: Values and variations of values in the acous-
tical test ratings per test-person. 


