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Abstract
Prosody has been traditionally regarded as useless for word
recognition. In this paper, we provide a schematic view describ-
ing how prosody can help word recognition. We provide our
view in terms of a Bayesian network that models the stochastic
dependence among acoustic observation, word, prosody, syn-
tax and meaning, and an information-theoretic analysis proving
that the mutual information between acoustic observation and
correct word hypotheses improves if prosody is jointly modeled
with word in a prosody dependent speech recognition frame-
work. We also report our experiment on Radio News Corpus
in which prosody has improved word recognition accuracy by
2.5%.

1. Introduction
Prosody has been traditionally regarded as useless for word
recognition since acoustic-prosodic features are mostly supra-
segmental and are only weakly dependent on phonetic mod-
els. The only prosodic feature that has been widely used in
speech recognizer is the normalized energy. Various attempts
have been made to incorporate duration into phonetic or word
models, but only small improvement has been achieved when
duration dependent models are applied to large scale continu-
ous speech recognition. There are also studies that attempted
to incorporate pitch into speech recognizer either by condition-
ing cepstral observations on pitch for normalization purpose, or
by including pitch as auxiliary variable to create pitch depen-
dent acoustic model [1]. The improvement reported by these
attempts is small and there are no explicit prosody knowledge
built into these systems.

On the other hand, due to the dependence of prosody on
high-level linguistic units such as disfluency, syntax, dialog
act, topic, meaning and emotion, prosody has been successfully
used to disambiguate syntactically distinct sentences with iden-
tical phoneme strings, infer punctuation of a recognized text,
segment speech into sentences and topics, recognize the dialog
act labels [2], and detect speech disfluencies.

Can prosody ever help word recognition? Linguistic study
has confirmed that humans are able to understand the content
with lower cognitive load and higher accuracy while listening to
natural prosody, as opposed to monotone or foreign prosody [3].
This suggests that it is possible to utilize prosody to improve
automatic word recognition. In section 2, we describe the com-
plex relationship among prosody and other linguistic units us-
ing a Bayesian network and suggest possible ways of using
prosody to improve word recognition. Section 3 proposes our
prosody dependent speech recognition framework and provides
an information-theoretic analysis proving that word recognition
can be improved when prosody dependence is incorporated in
both acoustic model and language model. Section 4 briefly de-

Figure 1: A Bayesian network representing the complex rela-
tionship among the acoustic-phonetic features (X), acoustic-
prosodic features (Y), word sequence (W), prosody sequence
(P), syntax sequence (S) and meaning (M) of an utterance.

scribes our experiments and results on Radio News Corpus, as
an experimental proof to our theoretical analysis. Conclusions
are given in section 5.

2. Bayesian network
The complex relationship among prosody and other linguistic
variables for a given utterance can be analyzed in terms of a
Bayesian network as depicted in Fig. 1, where we useP to
denote a sequence of prosody labels, one associated with each
word in the word sequenceW , describing the prosodic status
(e.g., the accentuation and the lengthening) of each word,S
represents a sequence of labels describing the syntactical role
of each word (e.g., parts-of-speech tags can be used as a subset
of S), M represents the meaning of the utterance that may affect
the distribution ofS, W andP . M is abstract in the sense that it
represents not only the literal meaning of the utterance but also
the high-level contextual meaning dependent on the neighbor-
ing utterances and other high level linguistic variables such as
dialog act, topic and emotion.X is the acoustic-phonetic ob-
servation sequence sampled at either frame or segmental level
andY is the acoustic-prosodic observation sequence sampled at
syllable or word level.

As shown in Fig. 1,X is dependent on bothW and P .
Prosody does affect the acoustic realization of words. For exam-
ple, unaccented vowels tend to be centralized or even deleted in
a function word, accented vowels tend to be longer and less sub-
ject to coarticulatory variation [4]; accented consonants are pro-
duced with greater closure duration, greater linguopalatal con-
tact, longer voice onset time, and greater burst amplitude [5].
These phenomena can be modeled in ASR by introducing a



prosody dependent pronunciation modelp(Q, H|W, P ) and
creating a prosody dependent acoustic modelp(ol|ql, hl) (i.e.,
conditioning the PDFs in conventional monophone or triphone
models on prosody variablehl), whereQ = (q1, . . . , qL) is a
sequence of sub-word units, typically allophones dependent on
phonetic context,H = (h1, . . . , hL) is a sequence of discrete
“hidden mode” vectors describing the prosodic states of each
allophone, andol is the acoustic observations (including both
phonetic and prosodic observations) over the allophoneql.

Y is also dependent on bothW andP . Y depends onW in
the sense that the location and the properties of prosodic events
are constrained by the pronunciation of words. For example,
in most cases, only primary lexical stressed syllables of an ac-
cented word are accented and only the rhyme of the last syl-
lable in the words preceding prosodic boundaries are relatively
lengthened [6].

P and W are mutually dependent. The dependence of
P over W has been illustrated by Kompe [7] who found that
prosody can be accurately predicted from word strings given
enough training data. On the other hand,W is restricted when
P is given becauseP can only be produced by certain word se-
quences. The mutual dependence ofW and P can be more
clearly understood through their dependence onS. The de-
pendence ofW on S is well-established. The dependence of
P on S has been proved empirically by Arnfield in a corpus-
based study [8] in which he claimed that although differing
prosodies are possible for a fixed syntax, the syntax of an utter-
ance can be used to generate an underlying “baseline” prosody
regardless of actual words, semantics or context. The depen-
dence ofW on S has been successfully utilized to create fac-
torial language models in which parts-of-speech are used as
word categories [9]. Similarly, the dependence ofP on S
has been utilized to create factorial prosodic language mod-
els [10]. P andW can be assumed to be conditionally inde-
pendent givenS and M : p(P |W, S, M) ≈ p(P |S, M) and
p(W |P, S, M) ≈ p(W |S, M).

W , P and S are all dependent onM . The dependence
of P over M can be either strong or weak depending mainly
on the speech mode. In normal conversational speech,P is
weakly dependent onM except for the cases when there are
syntactical ambiguities or there are high level information (such
as emphasis, contrast, attitude and emotion) to convey.

Prosody can be used to help word recognition in at least
three ways. First, it can be used to improve the accuracy of
the acoustic model due to the dependence ofX over bothW
andP . Second, sinceP andW are strongly dependent on each
other, they can be modeled as a single variable and the acoustic-
phonetic observation and the acoustic-prosodic observation can
be combined into one observation stream:O = [X, Y ]. This is
so called prosody dependent speech recognition which we will
discuss in details in section 3. In our current system,S is not
explicitly modeled (due to the small size of the corpus). In-
stead, it is used to reduce the conditional entropy ofp(W, P )
through factorial based approaches. Heeman has proposed to
explicitly modelS in the language model but he has assumed
thatO is independent ofP andS in his acoustic model [9] (and
he has not integrated intoO the acoustic-prosodic observation
Y ). The third way is to use the knowledge ofP to infer the
status ofM which can then be used to reduce the conditional
entropy ofW . This approach has been illustrated by Taylor [2]
who conditioned the language model on dialog act labels that
can be inferred from prosody. This way of using prosody is
highly task-dependent and is limited by the availability of ex-
plicit representation ofM .

3. Prosody dependent speech recognition
The task of speech recognition, given a sequence of observed
acoustic feature vectorsO = (o1, . . . , oT ), is to find the se-
quence of word labelsW = (w1, . . . , wM ) that maximizes the
recognition probability:

[W̃ ] = arg max p(O, W ), (1)

The mutual dependence between word and prosody has moti-
vated us to model them as a joint unit:

[W̃ ] = arg max p(O|Q, H)p(Q, H|W, P )p(W, P ) (2)

where p(O|Q, H) is a prosody-dependent acoustic model,
p(Q, H|W, P ) is a prosody-dependent pronunciation model,
and p(W, P ) is a prosody-dependent language model. The
combination[wm, pm] is called a prosody-dependent word la-
bel, the combination[ql, hl] is called a prosody-dependent allo-
phone label,

Let a prosody-dependent allophone model be defined as an
HMM whose states are conditioned on both phoneme labelql

and prosodic statehl. Assume that a prosody-dependent pro-
nunciation model may be pre-compiled so that each prosody-
dependent word label[wm, pm] corresponds to a unique hid-
den Markov model, created by concatenating an appropri-
ate sequence of prosody-dependent allophone models. Let
the prosody dependent language model be defined to be any
standard language model (this paper will use bigram mod-
els) describing the probability of[wm, pm] given the history
[w1, p1, . . . , wm−1, pm−1]. The average modeled mutual infor-
mation between the true word hypothesisWT and the acoustic
observationO may be defined as:

I(O; WT ) = EWT ,O

{
log

p(O, WT )

p(O)p(WT )

}
, (3)

where the expectation is computed over the true joint distri-
bution of WT andO, but the probabilities in the fraction are
modeled probabilities; thusI(O; WT ) is a measure of the qual-
ity of the PDF modelp(O, WT ). Suppose thatp(WT ) in
(3) is defined to be the true probability ofWT , so that only
the termsp(O) and p(O, WT ) depend on the quality of the
speech recognition model. Under this definition, the quantity
I(O; WT ) is related by a constant to the model discriminant
functionΦ(O; WT ) [11], defined as:

Φ(O; WT )

= EWT ,O {log p(WT |O)}

= EWT ,O

{
log

p(O, WT )∑
Ŵ p(O, Ŵ )

}

= −EWT ,O

{
log

(∑
i

ηi

)}
, (4)

where

ηi =
p(O, Ŵi)

p(O, WT )
=

p(O|Ŵi)

p(O|WT )
× p(Ŵi)

p(WT )
, (5)

which is the likelihood ratio comparing theith word sequence
hypothesisŴi to the true word sequenceWT .

The discriminant function of a prosody dependent recog-
nizer can be represented as

ΦP (O; WT ) = −EWT ,O

{
log

(∑
i

ήi

)}
(6)



where

ήi =
maxP̂ p(O, Ŵi, P̂ )

maxP̂ p(O, WT , P̂ )
,

=
p(O|Ŵi, P̂i)

p(O|WT , PT )
× p(Ŵi, P̂i)

p(WT , PT )
, (7)

PT is the prosody sequence that maximizesp(O, WT , P̂ ), and
P̂i is the prosody hypothesis that maximizesp(O, Ŵi, P̂ ).

The objective of prosody-dependent speech recognition in
this paper is to create prosody-dependent speech recognition
models such thatΦP (O; WT ) > Φ(O; WT ), thus increasing
the modeled probability of the correct word sequence given the
observation. From (4) and (6),ΦP (O; WT ) > Φ(O; WT ) if

EWT ,O

{
log

(∑
i ήi∑
i ηi

)}
< 0 (8)

Equation (8) expresses the condition under which prosody-
dependent speech recognition increases the modeled mutual in-
formationI(O; WT ). In order to guide the design and interpre-
tation of experiments in the field of prosody-dependent speech
recognition, it is valuable to spend some time trying to express
the meaning of equation (8) in words. Loosely speaking, equa-
tion (8) claims that modeled mutual information improves if
ήi < ηi for most combinations ofWT andŴi, where the word
“most” is quantified by the expectation overWT of the log ratio
of sums overŴi. Re-arranging terms, the conditiońηi < ηi

may be written:(
p(PT |WT )

p(P̂i|Ŵi)

)(
p(O, WT |PT )/p(O, WT )

p(O, Ŵi|P̂i)/p(O, Ŵi)

)
> 1 (9)

Equation (9) expresses the fractionηi/ήi as the product of two
terms. The first term on the left expresses the improvement, due
to prosody, in the selectivity of the language model. This term
is positive, for example, when the true word sequence is uttered
with a highly predictable prosodic pattern, thusp(PT |WT ) >

p(P̂i|Ŵi). The second term on the left expresses the improve-
ment, due to prosody, in the selectivity of the acoustic model.
This term is positive, for example, when the observation se-
quenceO is better explained by the true prosodyPT than by any
false prosodŷPi. The meaning of Equation (8) may therefore be
explained in the following words:ΦP (O; WT ) > Φ(O; WT )
if, most of the time, the correct prosodic sequence is well pre-
dicted by the word transcription, and the acoustic observation
is well predicted by the prosody. Note that it is possible for
a prosody-dependent speech recognizer to result in improved
word recognition accuracy even if the acoustic model and the
language model do not separately lead to improvements. Even
if prosody does not improve the recognition of words in iso-
lation, the likelihood of the correct sentence-level transcription
may be improved by a language model that correctly predicts
prosody from the word string, and an acoustic model that cor-
rectly predicts the acoustic observations from the prosody.

The selectivity of the language model may be maximized
by modeling only those prosodic labels that are most predictable
from word sequence statistics. In this paper, prosodic labeling
will include intonational phrase boundaries and phrasal pitch
accent. Previous research [7] has shown that both intonational
phrase boundaries and phrasal pitch accent are well predicted
by N-gram word sequence statistics.

The selectivity of the acoustic model may be maximized
by selectively modeling only those acoustic features whose dis-
tributions are well predicted by prosodic labeling. Papers in
acoustic phonetics suggest that talker-normalized fundamental
frequency (f0) is well predicted by the location of pitch ac-
cents [12], while normalized phoneme duration is well pre-
dicted by the location of intonational phrase boundaries [6].
Prosody-dependent modification of the acoustic-phonetic fea-
tures (e.g., MFCC) has been described as a reliable effect in the
case of some phonemes but not all phonemes [5], thus prosody-
dependent modification of the distribution of MFCCs will be
modeled only for an empirically selected subset of phonemes.

4. Experiments and results
We have trained and tested our prosody dependent speech rec-
ognizer on the Boston University Radio News Corpus [13]. In
this corpus, a majority of paragraphs are annotated with the or-
thographic transcription, phone alignments, part-of-speech tags
and prosodic labels. The part-of-speech tags used in this corpus
are the same as those used in the Penn Treebank. Part-of-speech
labeling is carried out automatically using the BBN tagger.

The prosodic labeling system represents prosodic phrasing,
phrasal prominence and boundary tones, using the Tones and
Break Indices (ToBI) system for American English. The ToBI
system labels pitch accent tones, phrase boundary tones, and
prosodic phrase break indices. Break indices indicate the degree
of decoupling between each pair of words; intonational phrase
boundaries are marked by a break index of 4 or higher. Tone
labels indicate phrase boundary tones and pitch accents, con-
structed from the three basic elements H, L, and !H which repre-
sent high tone, low tone, and high tone followed by pitch down-
step, respectively. In the experiments we reported in this paper,
the original ToBI labels are simplified: pitch accents are only
distinguished by presence versus absence, word boundaries are
only distinguished by intonational phrase boundary versus non-
intonational-phrase-boundary. Applying this simplification, we
create prosody dependent word transcriptions in which a word
can only have four possible prosodic variations: unaccented
phrase medial (“um”), accented phrase medial (“am”), unac-
cented phrase final (“uf”) and accented phrase final (“af”).

The prosodically labeled data used in our experiments con-
sist of 300 utterances, 24944 words (about 3 hours of speech
sampled at 16Khz) read by five professional announcers (3 fe-
male, 2 male) containing a vocabulary of 3777 words. Training
and test sets are formed by randomly selecting 85% of the ut-
terances for training, 5% of the utterances for development test
and the remaining 10% for testing (2503 words). Two acous-
tic models are used in this experiment: a prosody independent
acoustic model API and a prosody dependent acoustic model
APD. All phonemes in API and APD are modeled by HMMs
consisting of 3 states with no skips. Within each state, a 3 mix-
ture Gaussian model is used to model the probability density of
a 32-dimensional acoustic-phonetic feature stream consisting of
15 MFCCs, energy and their deltas. The allophone models in
APD contain an additional one-dimensional Gaussian acoustic-
prosodic observation PDF which is used to model the proba-
bility density of a nonlinearly-transformed pitch stream [14].
API contains monophone models adopted from the standard
SPHINX set [15] and is unable to detect any prosody related
acoustic effects. APD contains a set of prosody dependent allo-
phones constructed from API by splitting the monophones into
allophones according to a four-way prosodic distinction (un-
accented medial, accented medial, unaccented final, accented



Table 1:Percent word, accent and intonational phrase bound-
ary recognition accuracy for recognizers RII, RID, RDM, and
RDC.

RII RID RDM RDC
AM API APD APD APD
LM LPI LPI LPDM LPDC

Word 75.85 76.02 77.29 78.27
Accent 56.07 56.07 79.59 80.26

IPB 84.97 84.97 85.06 86.62

final): each monophone in API has 4 prosody dependent al-
lophonic variants in APD. Allophone models in APD that are
split from the same monophone share a single tied acoustic-
phonetic observation PDF, but each allophone distinctly models
the state transition probabilities and the acoustic-prosodic ob-
servation PDF. The APD allophones are therefore able to detect
two of the most salient prosody induced acoustic effects: the
preboundary lengthening, and the pitch excursion over the ac-
cented phonemes. The parameter count of the acoustic-phonetic
observation PDF (195 parameters per state) is much larger than
the parameter count of the acoustic-prosodic observation PDF
(2 parameters per state) or the transition probabilities (1 pa-
rameter per state); since the acoustic-phonetic parameters are
shared by all allophones of a given monophone, the total pa-
rameter count of the APD model set is only about 6% larger
than the parameter count of API.

Three language models are trained from the same train-
ing set: a standard prosody independent backoff bigram lan-
guage model LPI, a prosody dependent backoff bigram lan-
guage model LPDM computed using the prosody dependent
ngram count, a prosody dependent factorial backoff bigram lan-
guage model LPDC as reported in [10] in which parts-of-speech
are used as word classes to reduce the language model perplex-
ity.

Four recognizers are tested: a standard prosody indepen-
dent recognizer RII using API and LPI, a semi-prosody inde-
pendent recognizer RID using APD and LPI, a prosody depen-
dent recognizer RDM using APD and LPDM, and a prosody
dependent recognizer RDC using APD plus LPDC. The word
recognition accuracy, accent recognition accuracy and intona-
tional phrase boundary recognition accuracy of these recogniz-
ers over the same training and test set are reported in Table 1.

Overall, the prosody dependent speech recognizers have
significantly improved the word recognition accuracy (WRA)
over the prosody independent speech recognizers. RDM has
improved the word recognition accuracy by 1.4% over RII and
1.2% over RID. RDC has further improved the WRA by 1%
over RDM, apparently benefitting from the improved prosody
dependent language model LPDC. The pitch accent recognition
accuracy (ARA) and the intonational phrase boundary recog-
nition accuracy (BRA) are also significantly improved. Since
RII and RID classify every word as unaccented and every word
boundary as phrase-medial, the ARA and BRA listed in RII
and RID are the chance levels. RDC has achieved a significant
improvement of ARA and BRA: 24.2% and 1.7% repectively
above the chance levels.

5. Conclusions
In this paper, we have schematically analyzed the stochastic de-
pendence among acoustic observations, word, prosody, syntax
and meaning using a Bayesian network and suggested possible

ways of using prosody to improve word recognition. We have
proposed a prosody dependent speech recognition framework
and provided an information-theoretic analysis proving that the
mutual information between acoustic observation and correct
word hypotheses improves if prosody is jointly modeled with
word. The word recognition results and the prosody recogni-
tion results on Radio News Corpus have shown that prosody
can improved word recognition accuracy by as large as 2.5%.
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