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Abstract
Automatic prosody recognition (APR) is of fundamental

importance for automatic speech understanding. In this paper,
we propose a maximum likelihood prosody recognizer consist-
ing of a GMM-based acoustic model that models the distribu-
tion of the phone-level acoustic-prosodic observations (pitch,
duration and energy) and an ANN-based language model that
models the word-level stochastic dependence between prosody
and syntax. Our experiments on the Radio News Corpus show
that our recognizer is able to achieve 84% pitch accent recog-
nition accuracy and 93% intonational phrase boundary (IPB)
recognition accuracy in a leave-one-speaker-out task which has
exceeded previous reported results on the same corpus. The
same recognizer is tested on a subset of Switchboard corpus.
The accuracies are degraded but still significantly better than
the chance levels.

1. Introduction
Prosody refers to the suprasegmental features of natural speech
(such as rhythm and intonation) that are used to convey lin-
guistic and paralinguistic information (such as emphasis, inten-
tion, attitude and emotion). Prosody affects the acoustic real-
ization of speech at phonetic, syllabic, lexical and word level.
At phonetic level, prosody affects the acoustic realization of
phonemes. For example, accented vowels tend to be longer
and less subject to coarticulatory variation [1], while accented
consonants are produced with greater closure duration, greater
linguopalatal contact and longer voice onset time. At syllabic
level, prosody manifests through distinctive pitch and intensity
movements and durational variation (e.g., pitch accents, bound-
ary tones) under the constraints of the lexical stress patterns,
which are relatively fixed as intrinsic properties of words. How-
ever, in the cases of emphatic accents (where all syllables of
a word are accented) and contrastive accents (where accentu-
ations are realized on non-primary-lexical stressed syllables),
the stress assignment is determined directly by prosody rather
than lexicon. At word level, prosody manifests through phrasal
prominences and meaningful uses of breaks and pauses under
the constraints of syntax and other high-level linguistic vari-
ables such as semantics, pragmatics and emotion.

The correct recognition of prosody not only requires correct
prosody recognition models at these various levels, but also re-
quires a model that imposes the high-level linguistic constraints.
Wightman et al. [2] proposed an automatic prosody recognition
system that detects prosody at syllable-level. In their system,
decision-tree models are trained to calculate the posterior prob-
ability of syllable-level prosody labels given the syllable-timed
acoustic features. This recognizer lacks a model that imposes
the high-level linguistic constraints and assumes that prosody
can be determined completely from their syllabic-timed acous-

tic observations and pre-compiled lexical stress information.
Nevertheless, it is successful on labeling pitch accents on the
Radio News Corpus [3] with 84% accuracy on accent pres-
ence/absence prediction, about 30% higher than the estimated
chance level. However, it does not perform well on intonational
phrase boundary (IPB) detection: IPB recognition accuracy is
only 71%, 12% below the estimated chance level. The low IPB
recognition accuracy is mainly due to the insufficient acoustic
statistics at intonational phrase boundaries. Unlike the acoustic-
phonetic features, the syllabic acoustic-prosodic features are in-
trinsically highly variable not only in their strength (amplitude,
shape, duration) but also in their time alignment with the syl-
lables (e.g., the peak or valley of the pitch contour may occur
in the syllables preceding or succeding the accented syllable).
In addition, they often suffer from both inter-speaker difference
(e.g., female speakers usually use more expressive prosody than
male speakers) and intra-speaker difference (e.g., a speaker can
use different prosody for the same word strings in different con-
text). In fact, determining prosody at syllable level from given
acoustic context and lexical constraints is not only difficult for
machines but also difficult for human labelers. While listen-
ing to the speech segments, human labelers often utilizes high-
level linguistic constraints to decide the most plausible prosody
labels. For example, the fact that prosodic phrase boundaries
coincide with syntactic phrase boundaries can be used to effi-
ciently locate the prosodic phrase boundaries.

The dependence of prosody over high-level linguistic vari-
ables has been applied in speech synthesis to assign prosody
from text. Although it is generally believed that syntactic, se-
mantic, pragmatic factors are all involved in predicting prosody,
only syntactic information is used in current automatic systems
due to the difficulty in representing and extracting semantic and
pragmatic information from text. Hirschberg [4] has proposed
a decision-tree based system that achieved 82.4% speaker de-
pendent accent labeling accuracy on Radio News, a large im-
provement over early systems that label prosody based on func-
tion word versus content word distinction. Hirschberg’s re-
sult is important because it indicates that it is possible to ac-
curately predict prosody from syntax. In another corpus-based
study, Arnfield [5] claimed, after his bigram models predicted
prosodic stress from parts-of-speech (POS) with 91% accuracy,
that although differing prosodies are possible for a fixed syntax,
the syntax of an utterance can be used to generate an underly-
ing ”baseline” prosody regardless of actual words, semantics or
context. Similar results were achieved by Ross et al. [6], whose
system predicted ToBI [7] style prosody labels from text with
82.5% word-level accent presence/absence accuracy. Ross’s
decision-tree based system is different from Hirschberg’s in
that it assigns prosody at syllable level instead of at word level
and requires pre-generated prosodic phrase structure as input.
Even though the importance of syntax in predicting prosody has



been recognized in designing these previous systems, the syn-
tactic information contained in the text are not fully utilized:
these systems either used small POS set (only 8 POS categories
in [4] [6]) due to the limitation in their decision-tree algorithm,
or included only small POS context (unigram in [4] [6] and bi-
gram in [5]).

Kompe [8] proposed another prosody recognition system
that uses neural network for the acoustic-prosodic modeling of
phoneme-wise prosody and a polygram model for the syntactic-
prosodic modeling of the word-wise prosody. The polygram
model computes the probability of a prosody labelpl given the
surroundingn words: p(pl|wl−n+2, wl−n+3, . . . , wl+n−1).
Kompe’s system has achieved 95% IPB recognition rate for
his prosodic-syntactic M labels, labels that are deterministically
transformed from the syntactic phrase boundaries (based on a
set of empirical rules) but better correlate with the prosodic
phrase boundaries. Kompe’s syntactic-prosodic model would
be ideal given a large amount of training data. In practice,
conditioning prosody on word strings creates problems of data-
sparseness especially for small-sized corpora. Despite this dis-
advantage, Kompe’s result suggests the potential advantage of
modeling the dependence of prosody over large context (n > 3)
and relatively large variety of word categories other than the
over-simplified POS classes. Rather than conditioning prosody
directly on word strings, conditioning prosody on the syntactic
representation (e.g., parts-of-speech) of word strings can effec-
tively reduce the entropy of the syntactic-prosodic models [9].

Motivated by these results, we propose to build a prosody
recognizer that effectively detects acoustic-prosody cues and
imposes syntactic constraints. In section 2, we formulate our
system in a maximum-likelihood estimation framework, similar
in appearance to canonical automatic speech recognizers. Sec-
tion 3 describes the acoustic features and syntactic features that
are used in our experiments. Section 4 reports the experiments
and results, and conclusions are given in section 5.

2. Method
Let W = (w1, . . . , wL) be the word sequence,P =
(p1, . . . , pL) the prosody sequence of an utterance. The task
of prosody recognition is to find the optimal prosody sequence
P̃ that maximizes the recognition probability:

[P̃ ]= arg maxP p(Y,W ),

= arg maxP p(Y |W,P )p(P |W ),

= arg maxP

L∏
l=1

p(yl|wl, pl)p(pl|φl(W ))γ , (1)

where Y = (Y1, . . . , YL) is a sequence ofL word-wise
acoustic-prosodic features andφl(W ) is a function that extracts
all the information inW that affects the prediction ofpl. As-
suming the dependence of prosody on word strings is localized
in a window ofn words and is described by the syntactic roles
of the words (primarily parts-of-speech) instead of the words
themselves, then:

φl(W ) = (sl−(n−1)/2, . . . , sl, . . . , sl+(n−1)/2), (2)

wheresl represents the syntactic information contained inwl

that affects the prediction ofpl. In general,sl can include all
possible information one could obtain from the text analysis (in-
cluding semantic information). Parts-of-speech is shown to be
most useful, but other type of information such as the location
of syntactic boundaries is also helpful. The language model

probability has been raised by a power ofγ, a constant that can
be used to adjust the weighting between the language model and
the acoustic model.

The probabilityp(yl|wl, pl) in equation (1) can be further
expanded to syllable or phoneme level:

p(yl|wl, pl) (3)

=
∑

Ql,Hl

∏
(qnl

,hnl
)∈(Ql,Hl)

p(ynl |qnl , hnl)p(Ql, Hl|wl, pl)

wherep(Ql, Hl|wl, pl) is a pronunciation model that computes
the probability of a phoneme stringQ = (q1, . . . , qnl , . . . , qNl)
and the accompanying phoneme-level prosody stringH =
(h1, . . . , hnl , . . . , hNl) given prosody dependent word token
(wl, pl), andynl represents the acoustic-prosodic observations
over the allophone(qnl , hnl). Assuming that prosody does not
change the assignment of lexical stress, all the pronunciation in-
formation can be pre-compiled and loaded in before recognition
starts. Note that the lexical stress information is conveniently
expressed in the pronunciation model, as is the prosody induced
pronunciation variation (different pronunciation of a word un-
der difference prosody). An example is given below for the
word “above”:

• above: ax b ah v

• above!: ax b! ah! v!

• aboveB4: ax b ahB4 vB4

• above!B4: ax b! ah!B4 v!B4

In the above example, we used postfix “!” to label the pitch
accent, and “B4” to label the words and phonemes that are af-
fected by the intonational phrase boundaries. “!” is attached to
the phonemes in the primary lexically stressed syllable because
in most cases, only the primary lexically stressed syllable in an
accented word is accented. “B4” is attached to the phonemes
in the last rhyme because it has been shown that preboundary
lengthening only occurs within the rhyme of the last syllables
in the preboundary words. Since a prosody dependent word to-
ken (wl, pl) may have multiple pronunciations, a summation
overQl, Hl is included in equation (3) to sum up all possible
lexical entries for(wl, pl).

The language modelp(pl|φl(W )) has been modeled by a
multilayer perceptron (MLP) where the output of the MLP is
used to compute the posterior probability ofpl given the syn-
tactic informationφl(W ):

p(pl = i|φl(W )) =
gi(φl(W ))∑
i gi(φl(W ))

. (4)

wheregi(·) is the ith output of the MLP. Since we have cho-
senφl(W ) such that it contains syntactic information from a
fixed window ofn words surroundingpl, the number of input
nodes is always fixed for eachl. The number of output nodes
is determined by the variety of prosody that is modeled at word
level. In this paper, we chose to model only 4 possible prosody
patterns for each word: unaccented phrase-medial, unaccented
phrase-final, accented phrase-medial and accented phrase-final.
This set of prosody labels is the same as those used in [2].

The acoustic modelp(y|q, h) is trained using standard
EM algorithm and the MLP-based syntactic prosodic model is
trained using standard error back-propagation algorithm.



Figure 1:The non-linear pitch transformation of the utterance
“ANd, FIve of them will be JEWish”, where capital letters de-
note the accented syllable onsets.

3. Features
3.1. Acoustic features

The primary acoustic cues for prosody are pitch, duration and
energy. Other acoustic cues like voice quality are useful in gen-
eral but are hard to reliably estimate. The raw f0 and RMS
energy feature are obtained using Entropic XWAVES, commer-
cial software well-known for its high accuracy pitch detector.
Duration features are obtained using the time-aligned phoneme
transcription either generated by hand or by automatic methods.

It is important to normalize the pitch features such that they
are less affected by inter-speaker and intra-speaker variation.
The noisyf0(t) returned by the pitch tracker are first filtered
by a 3 mixture Gaussian classifier (with the mixture component
means restricted to be1/2, 1, and2 times the utterance mean
f̄0) to remove the pitch doubling and halving errors, and are
then converted using:

f̂0(t) = log(f0(t)/f̄0 + 1). (5)

The f̂0(t) with probability of voicing (output also from
XWAVE) smaller than an empirical threshold are removed since
they are normally extracted from non-vocalic frames and are
not reliable. Linear interpolation is carried out to recover the
completef̂0(t) contour where the original measures have been
previous removed [8].̂f0(t) is further normalized by an MLP-
based nonlinear transformation functionψ(·) trained to min-
imize the mean square error between the transformed feature
f̃0(t) and a teaching signal that indicates the location of the
transcribed pitch accents:

f̃0(t) = ψ(f̂0(t)). (6)

It is shown in our experiment that this nonlinear transforma-
tion has considerably reduced the intra-speaker differences, es-
pecially the pitch declination effects (the gradual reduction of
mean and variance off0 toward the end of a prosodic phrase)
which is known to hurt the accent prediction. An example illus-
trating this nonlinear transformation is given in Fig. 1.

A group of five features are computed as our base feature
vector ~xi, measured once per segment:

1. allophone duration,

2. average allophone duration over a window of 3 phones,

3. average energy over a window of 3 allophones,

4. the delta of the 3-phone-average of the phoneme-wise
meanf̃0,

5. the delta of item 4.

These features are similar to those in the previous works [2,
8] and are shown to give the best performance among a set of
around 15 features. Duration features are used without nor-
malization because we found that normalization degrades the
performance, as has been reported similarly by Batliner et al.
in [10]. Average allophone duration over a window of 3 allo-
phones is a feature that encodes pause duration. The longer the
pause is, the more it influences the neighboring phonemes. Af-
ter ~xi is computed, they were rotated using principle component
analysis (PCA) such that they can be better modeled by diago-
nal covariance Gaussian PDF. The delta of the rotated feature
vectors are attached to make up a 10-dimensional feature vector
~yi for each allophone.

3.2. Syntactic features

Syntactic feature vector in our system includes syntactic infor-
mation from a window of 5 words centered at current word.
The syntactic information extracted from each of these 5 words
includes:

1. parts-of-speech,

2. The number of syntactic phrases the word initiates,

3. The number of phrases ending right after the word.

A set of 32 POS tags are used, which are the same as those
used in the Penn Treebank. Syntactic phrase structure is auto-
matically labeled by Charniak’s syntactic parser [11]. Since “si-
lence” is annotated in our word transcription, we augmented our
parts-of-speech set to include a new label “SIL” which is shown
to be very useful for boundary prediction. The “pause” and
“breath” cues are among those that are most robust for boundary
prediction. If they are not annotated in word transcription, they
can be inferred from punctuation or automatic silence/breath
detection results. Each POS tag is mapped to a 33 dimensional
binary feature vector. The second and third syntactic features
listed above are integer-valued and are normalized to real num-
bers after being divided by a constant. Each MLP input vector
hence contains35 × n syntactic features.

4. Experiments and Results
Our first experiment has been carried out on the Boston Uni-
versity Radio News Corpus (RNC), one of the largest corpora
designed for study of prosody [3]. In this corpus, a majority
of paragraphs are annotated with the orthographic transcrip-
tion, phone alignments, part-of-speech tags and prosodic labels.
In our experiment, only intonational phrase boundary versus
non-intonational phrase boundary, pitch-accented versus pitch-
unaccented are distinguished.

A leave-one-speaker-out strategy is applied to estimate the
system performance. Data used in the experiments are extracted
from 4 speakers: F1A, F2B, M1B and M2B (where F/M des-
ignates female/male speakers). For each experiment, we have
used data from one speaker for test and the other three for train-
ing. F2B was never left-out because it contains the most data.
The statistics of the speakers are listed in Table 1 and the aver-
age (weighted by number of words in each speaker) recognition
results are listed in Table 2.



Table 1:The number of utterances, number of words, number of
accents and number of intonational phrase boundaries (IPBs)
for the 4 speakers used in our experiment.

Speakers F2B F1A M1B M2B
# Utterances 164 51 38 33
# Words 14844 3098 3366 2363
# Accents 6345 1382 1500 1061
# IPBs 2744 497 445 409

Table 2:The averaged accent, boundary and accent/boundary
combined recognition accuracy (%) for acoustic model only
(AM only), language model only (LM only) and acoustic model
language model combined systems on the leave-one-speaker-
out task on the Radio News Corpus.

Accent Boundary Acc. Bnd. combined
AM only 76.58 68.23 50.06
LM only 82.67 90.09 76.81
Combined 83.91 93.07 78.42

As shown in Table 2, the acoustic model only (AM only)
results are worse than Wightman’s results (84% for accent and
71% for boundary). However, our task is more difficult since
our training set contains no utterance spoken by the test speaker.
On the other hand, since our GMM-based acoustic model is
simpler than Wightman’s decision tree acoustic model both in
the structure and in the dimensionality of input features, slightly
worse results are expected. An advantage of our acoustic model
is that it may provide better generalizability to unseen data as it
can better avoid over-training problems than decision trees due
to its simplicity. The language model only (LM only) results
are very good. Especially, the boundary recognition rate has
reached 90%, 7% better than the chance level 83%. Accent can
also be predicted by syntax with an 82.7% accuracy. Combining
acoustic model and language model, we achieved accent recog-
nition accuracy of 84.2% and boundary recognition accuracy of
93%, approaching the agreement rate between different human
labelers (85-95% for accent, 95-98% for IPB using ToBI) for
both accent and boundary recognition.

Our second experiment tests the recognizer trained on RNC
on a subset of prosodically labeled Switchboard data [12]. This
experiment provides us a preliminary measure on how prosody
differs across different speech styles. In this experiments,
the intermediate phrase boundary and the intonational phrase
boundary are grouped as a single boundary class. Results are
reported in Table 3.

As shown in Table 3, both accent and boundary recogni-
tion accuracies are significantly better than the chance levels.
This result indicates that our system can be used for preliminary

Table 3: The averaged accent and boundary accuracy (%) for
acoustic model only (AM only), language model only (LM only)
and acoustic model language model combined systems on a
subset of Switchboard corpus.

Accent Boundary
chance 68.0 77.9
AM only 74.48 71.19
LM only 78.71 82.61
combined 78.76 82.61

prosody labeling of Switchboard to ease the human labeling ef-
forts.

5. Conclusions
In this paper, we have proposed a Maximum Likelihood
prosody recognizer consisting of a GMM-based acoustic model
that models the distribution of phone-level acoustic-prosodic
observations (pitch, duration and energy) and an MLP-based
language model that models the stochastic dependence between
prosody and syntax. Our experiments on Radio News Corpus
have demonstrated the effectiveness of the MLP-based syntax-
prosodic language model. The acoustic model alone gives mod-
erate performance but is shown to capture complementary in-
formation which is useful to improve the overall system per-
formance. Our prosody recognizer is able to achieved 93%
IPB recognition accuracy and 84% pitch accent accuracy in a
leave-one-speaker-out task, which are significantly better than
previously reported results and are approaching the agreement
rate among different human labelers. The recognizer trained
on RNC is tested on a subset of Switchboard corpus and has
achieved accuracies significantly better than the chance levels.
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