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Abstract
This paper deals with the automatic analysis and synthesis
of intonation using Fujisaki’s model. We propose an analy-
sis method which imposes strong linguistic constraints. This
method produces good representations of the F0 contour when
compared to other current methods which do not impose such
constrains. Furthermore, this option limits the variability and
is more predictable so it is the best option for prediction (at
least when accent commands are related to accent groups). Sev-
eral prediction algorithms are evaluated. The results show that
VCART (an extension of CART to predict vector values) gives
the best performance when compared with standard CART or
with neural networks. The paper also analyzes which features
are more relevant to predict the parameters of Fujisaki’s model.

1. Introduction
Fujisaki’s model [1] is a well known representation of intona-
tion. In this model, the lnF0 is expressed by the superposition
of the baseline value of the fundamental frequency (Fb) with
the outputs of two critically-damped second-order filters. The
first filter is excited by deltas and accounts for the slow-varying
phrase component. The second filter is excited by pulses and
accounts for the fast-varying accent component.

Fujisaki’s model is very compact: there is no redundancy
in phrase and accent commands. It is able to cover many in-
tonation phenomena (although the model needs to be validated
on different speech styles). And the commands can be linguis-
tically interpreted as phrase and accent movements. However,
the representation of the F0 contour is not unique. In fact, the
F0 contour can be approximated by the output of the model
with arbitrary accuracy, if a large number of commands is used.
Therefore, there is always a trade off between minimizing the
approximation error and obtaining a set of linguistically mean-
ingful commands.

With respect to automatic analysis, recently some meth-
ods were proposed for extracting the parameters of Fujisaki’s
model. Mixdorff [2] and Narusawa et al. [3] extracted the pa-
rameters without using any linguistic information. The algo-
rithms produce contours that match closely the original con-
tour. The main problem of this approach is that it may be diffi-
cult to relate the extracted parameters to linguistic information.
To increase the linguistic interpretability, Möbius constrained
Fujisaki’s parameters by intonational entities directly related to
linguistic features [4]. In this paper we analyze if these con-
strains degrade the aproximation to the original contour.
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Concerning to synthesis, it is necessary to predict the po-
sition and amplitude of phrase and accent commands from lin-
guistic features. Navas et al. [5] proposed to predict Fujisaki’s
intonation model parameters using CART which is well suited
to classify and predict values based on unordered discrete val-
ues. In the standard implementation, if several variables are pre-
dicted, they are handled independently, building a specific tree
for each one. This can produce ill effects if the values are corre-
lated. Neural networks are another prediction method which is
frequently used in text-to-speech synthesis. Although they are
not very well suited to deal with unordered discrete features,
they give good results in many problems. Mixdorff et al. [6]
predicted the parameters of each syllable using a feed-forward
neural network. It jointly predicted the parameters of Fujisaki’s
intonation model and other prosodic patterns. In this paper we
compare these two methods with an extension to the CART al-
gorithm: one unique regression tree is built to jointly predict
correlated parameters.

This paper is organized as follows. In section 2, we analyze
the extraction methods proposed by Mixdorff [2] and Narusawa
et al. [3]. Some modifications are proposed and evaluated. It
will be seen that the predicted commands are not easily related
to linguistic features. Therefore, we propose a method that ex-
tracts the commands imposing severe linguistic constraints. The
performance of this method is comparable to the other ones, val-
idating the imposed constraints. Section 3 compares the three
prediction algorithms mentioned previously. This section also
analyzes which features are more useful to predict each com-
mand. Finally, the main conclusions of this work are drawn.

2. Analysis: extraction of the parameters
In Fujisaki’s intonation model, the lnF0 satisfies the following
equation:

ln F0(t) = ln Fb +
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Gp(t) represents the impulse response function of the
phrase control mechanism and Ga(t) represents the step re-
sponse function of the accent control mechanism. These func-
tions are fixed for a wide range of speakers and languages.

The underlying phrase and accent commands of an utter-
ance (Api

, T0i
, Aaj

, T1j
and T2j

) cannot be directly inferred,



because there is no analytical solution to the inversion of Fu-
jisaki’s model. Usually, approximation algorithms are used to
infer the underlying commands. A good initial estimation of
the number and position of phrase and accent commands is
crucial to obtain linguistically meaningful commands. This
section compares the methods of Mixdorff [2] and Fujisaki et
al. [7, 3, 8]. Some modifications are proposed to the previous
methods. Finally, we introduce a new method that imposes lin-
guistic constraints.

2.1. Algorithms based on Mixdorff’s method

Mixdorff proposed a multi-stage approach performing a spec-
tral decomposition in low frequency (LFC) and high frequency
(HFC) components of fundamental frequency contour [2]. The
first step of the algorithm consists of a quadratic spline styliza-
tion of the curve. Then, the smoothed fundamental frequency
contour is decomposed in two components, using low-pass and
high-pass filters. The output of the high-pass accounts for the
faster movements in the F0 contour. Therefore accent command
onsets and offsets are detected in the high-pass filtered contour,
corresponding to two subsequent minimum points. Since the
low-pass filtered contour contains the slower variations of the
F0 movements, the onset of a phrase command is character-
ized by a local minimum of the low frequency contour. This
initial command parameter sequence is refined by a three-step
hill-climbing search, which minimizes the overall mean-square-
error. In our study we use the freely available implementation
of Mixdorff, herein after called M1.

However some problems were observed: the extraction pro-
cedure tends to miss the first accent command, if the high-pass
filtered contour starts with an absolute minimum. Therefore we
modified the command initialization procedure and placed the
first accent command already in the beginning of the phrase, if it
is indicated by the absolute minimum. This applies analogously
to the last accent command. Furthermore algorithm M1 is op-
timized for German and misses many commands in our Span-
ish speech corpus. For this reason the parameters of the initial
smoothing procedure are adapted. The modified algorithm is
denoted hreafter as M2.

2.2. Algorithms based on Fujisaki’s method

Fujisaki et al. [7, 3, 8] suggested to extract parameters applying
a preprocessing procedure that results in the continuous third-
order polynomial stylization. Commands are searched in the
derivate of this function. First preprocessing is performed to
eliminate gross errors and border effects (e.g. micro-prosodic
disturbances). Then the contour is smoothed using piecewise
cubic interpolation, which results in a curve, that is differen-
tiable everywhere. A sequence of maximum and minimum of
the first derivative of the smoothed F0 contour corresponds to
the onset and offset of an accent command. The effect of accent
commands is subtracted from the smoothed F0 contour. The
phrase commands should approximate this residual F0 contour.

Since no detailed description of the phrase command esti-
mation procedure was given, we applied the following method:
maximum points in this residual contour correspond to phrase
command onsets, with a delay equal to the damping time of the
phrase control filter. The minimum distance of two subsequent
phrase commands is limited to 500 msec. The integral of the
residual contour serves for amplitude estimation of the phrase
command. This method is named F1.

The above method relies on the derivative of the smoothed
contour, which also contains minor effects of the phrase com-

mand response. This may sometimes confuse the accent com-
mand initialization. Therefore we also applied accent and
phrase command estimation in reverse order. Extracting phrase
commands first and subtracting them from the smoothed con-
tour yields a residual curve that should only contain the effects
of accent command responses. This should facilitate the esti-
mation of the onsets and offsets of accent commands. On the
other hand the estimation of phrase commands needs to be more
precise. We refer to this as version F2.

2.3. Linguistically Motivated Method

The previous methods do not impose any constrain in the pa-
rameters. This flexibility allows the algorithms to produce con-
tours that closely match the original contours. However, it may
be difficult to interpret linguistically and to predict the com-
mands from the text. Our proposal is a parameter extraction al-
gorithm that uses information about accent groups and prosodic
phrases, which is available both in the TTS system and in the
training corpus. Accent groups are defined as one content word
and all the preceding function words. This intonation unit has
being used frequently to describe Spanish intonation and has
being used by recent proposals (see for instance [9]), obtain-
ing good representations. The algorithm applies the following
constraints:

• Each prosodic phrase is modeled by one phrase com-
mand, that can only appear within a window of 200 msec
centered at the beginning of the prosodic phrase.

• The number of accent commands inside each accent
group is limited to one.

To simplify the command estimation procedure we make
use of the following observation: phrase and accent commands
only influence future commands. Since the distances of the
commands are normally rather large, they often do not inter-
act at all. Therefore we can obtain the initial guess of each
command independently of the others, using a left-to-right pro-
cedure. First, the log F0 contour is interpolated in the voice-
less segments and the base frequency is removed. The result
is filtered using a median filter. The onset of the phrase com-
mand is limited to the beginning of the phrase ±100 msec. The
phrase command amplitude is computed so that the phrase com-
mand does not cut the original contour. In this way, the accent
command responses can be superposed later on. Each phrase
command is removed from the original contour, resulting in a
residual contour. Accent commands are searched in the resid-
ual contour, computing the optimal magnitude for each combi-
nation of onset and offset. The command that gives the least
mean square error is chosen. The minimal duration of an accent
command is fixed to 50 msec.

This initial approximation is improved by a hill-climbing
algorithm based on gradient descent, that minimizes the mean-
square-error in the log-domain between the original F0 con-
tour and the synthetic one, optimizing all commands jointly (the
whole method is called L1 in the sequel).

We also propose an alternative, which forces the accent
commands to be closely related not only to accent groups, but
also to the stressed syllables. The search of initial accent com-
mand positions is restricted to the stressed syllable inside the ac-
cent group, the preceding and the following syllable. The error
function of the hill-climbing procedure is weighted to further fa-
vor the placement of accent commands near stressed syllables.
The developed algorithm is referred to as L2.



2.4. Experimental results

The employed speech corpus consists of 500 declarative sen-
tences, that were read by a female speaker. The fundamental
frequency contour was derived from the laryngograph signal.
Altogether it contains 2893 accent groups and 937 prosodic
phrases. The value of the baseline frequency Fb for the Fujisaki
model was set to 107 Hz.

Table 1 shows the results of the algorithms described in
this section. For each algorithm the mean square error (MSE)
and the correlation (ρ), is computed comparing the contour pro-
duced by the extracted commands and the original log F0 con-
tour (after interpolation). The table also shows the number of
phrase commands and the accent commands normalized by the
number of prosodic phrases and accent groups respectively. The
results reveal the correlation between the error and the number
of commands. In general, the algorithms M1 and M2 tend to
place fewer commands than the other methods. Consequently,
the MSE of methods M1 and M2 is relatively high compared
to the other approaches. As already mentioned, the method M1
seems to ignore minor accent commands and also miss some
phrase commands. The modified method M2 found more ac-
cent commands than the original method M1 and consequently
gets slightly lower error. On the other hand, the methods F1 and
F2 have the lowest errors, but they tend to use more commands
than the other methods. The method F2 gives better results than
F1. This indicates that primary estimation of phrase commands
was successfully applied. Finally, in spite of the strong restric-
tions applied, the algorithms L1 and even L2 produce good ap-
proximations to the original F0 contour.

Table 1: Results of command extraction: # pc: number of
phrase commands / number of phrases; # ac: number of ac-
cent commands / number of accent groups; MSE: mean square
error; ρ: correlation coefficient.

Algorithm # pc # ac MSE ρ

M1 0.57 0.56 21.6 ∗ 10−3 0.79
M2 0.59 0.77 19.0 ∗ 10−3 0.81
F1 1.47 1.53 2.0 ∗ 10−3 0.96
F2 1.60 1.60 1.1 ∗ 10−3 0.98
L1 1.00 1.00 5.5 ∗ 10−3 0.87
L2 1.00 1.00 5.8 ∗ 10−3 0.87

2.5. Experimental results with limited commands

We propose to relate accent commands to the accent group. The
algorithms M1, M2, F1 and F2 may detect several accent com-
mands in each accent group. Thus, the number of accent com-
mands has to be predicted. Several experiments were done to
predict this number from the features available in the TTS into-
nation module but the classification performance was very poor.

Alternatively, the commands extracted were filtered to se-
lect for each accent group only the accent command with the
largest area. However, the deletion of the small accent com-
mands degrades dramatically the results, specially for the F1
and F2 algorithms. For instance, for the F1 method the MSE
increases to 16 ∗ 10−3.

As conclusion, the methods L1 and L2 are selected as the
analysis method. It seems that the best option to relate the com-
mands to the accent group is to impose linguistic constraints in
the extraction algorithm since the initialization.

3. Synthesis: prediction of the parameters
3.1. Prediction methodology

As stated in previous section, we propose to relate the accent
command to the accent group and the phrase command to the
prosodic phrase. The selected extraction algorithm are the ones
named (L1 and L2). For each accent group, the parameters
of the unique command (Aa, T1, and T2 − T1) are predicted.
All the times are referred to the beginning of the accent group.
This procedure is iterated for each accent group from left to
right. Furthermore, the algorithm predicts the parameters of the
phrase command (Ap and T0) for each prosodic phrase.

3.2. Features for prediction

In text-to-speech synthesis, the F0 contour needs to be predicted
from linguistic features derived from input text. Furthermore, in
many systems, phrase detection and duration assignment is al-
ready done before predicting the F0 contour. We consider all
the available features which may be related to the F0 contour.
Many of them were proposed by Navas et al. [5]. These features
include information as duration, position, type, etc. from sev-
eral prosodic units as the stressed syllable, accent group, and
prosodic phrase. Some additional features were added. For in-
stance, to predict the accent command, we considered the dura-
tion of the stressed syllable, the POS of the first and last word of
the accent group and the amplitude of the last phrase command.

3.3. Prediction algorithms

Three prediction algorithms are evaluated. The CART algo-
rithm independently predicts each one of the five values. CART
algorithm has been successfully used in many problems, but in
the standard implementation does not exploit correlation be-
tween the values to be predicted. The second prediction al-
gorithm is based on neural networks. Two neural networks
are trained, one for the accent command parameters and other
for the phrase command parameters. Neural networks predict
jointly the parameters but they are not very well suited to deal
with unordered discrete values. Finally, the CART algorithm is
extended to predict vector values (this extension will be referred
as VCART). At each node of the tree, the chosen question is the
one that minimizes the mean Mahalanobis distance to the cen-
troid. This algorithm can be seen as a vector clustering based
on features. As in the neural networks case, two VCART are
built, one to predict accent commands and the other for phrase
commands. The advantage of this method with respect to stan-
dard CART is that it avoids some ill effects that occur when
correlated parameters are predicted independently.

3.4. Experimental results

Several experiments are performed to evaluate the performance
of the different methods. The classifiers are trained using the
commands extracted from 400 declarative sentences. For the
100 test sentences, the commands are predicted and the log F0

contour is generated. Then, the mean square error (MSE) and
the correlation (ρ) are computed as defined in section 2.4.

Table 2 compares the performance of each prediction
method (CART, neural networks and VCART) for the two
methods selected to extract the parameters of Fujisaki’s model
from the training corpus. For the extraction method L1, neural
networks and VCART perform significantly better than CART.
This reveals the importance of exploiting the correlation be-
tween the parameters of the commands. VCART is in this case



Table 2: Results of contour prediction for the selected extraction methods L1 and L2.

Pred. algorithm CART Neural Networks VCART
Extrac. algorithm MSE ρ MSE ρ MSE ρ

L1 34.6 ∗ 10−3 0.44 23.4 ∗ 10−3 0.47 20.6 ∗ 10−3 0.50
L2 22.5 ∗ 10−3 0.51 22.0 ∗ 10−3 0.49 22.6 ∗ 10−3 0.50

the best solution. For the L2 algorithm, the prediction method
does not affect significantly the results. We believe that as the
extraction method impose so strong constraints in the positions,
these values are almost fixed and therefore the parameters are
less correlated. The use of L1 with VCART gives the best re-
sults (in MSE) but L2 gets similar results (even better in correla-
tion). We conclude that imposing strong restriction on the posi-
tion of Fujisaki’s commands does not degrade the performance
and makes more easy to interpret and to predict the commands.

Some additional experiments are done to evaluate the im-
portance of each feature to predict the commands. The VCART
prediction method and the L1 extraction method are selected to
perform this analysis. Starting from the complete classifier, the
feature that less influences the prediction results is deleted from
the set of available features. The degradation of the classifiers
indicates the importance of that feature. This procedure is iter-
ated until only one feature remains.

With respect to the parameters of the command phrase,
the T0 value is not very critical because the extraction method
forces the command to be near the beginning of the phrase. On
the other hand, the amplitude Ap seems to be strongly corre-
lated with the duration of the phrase and with the position of the
phrase in the sentence: long phrases need larger amplitudes and
the amplitudes decrease along the sentence. With respect to the
accent command, most of the prediction power comes from the
duration of the accent group, the number of remaining accent
groups in the phrase and the amplitude of the last phrase com-
mand: we observe that the amplitudes of the accent commands
decrease along the phrase; furthermore, if the phrase command
amplitude gets a large value, then the accent commands require
small amplitudes to produce natural contours.

4. Conclusions
In this work the parameters of the Fujisaki’s intonation model
are derived automatically from data. Accent commands are re-
lated to the accent group. This intonation unit has offered good
results in several works on Spanish intonation. Some prelimi-
nary experiments show that the F0 contours are better predicted
if the number of accent commands in each accent group is lim-
ited to one.

A new method is proposed to extract the parameters of the
Fujisaki intonation model. The method makes an initial guess
assuming that there is only one accent command for each ac-
cent group and one phrase command at the beginning of each
prosodic phrase. Afterwards, the locally optimal parameters are
found using the gradient method. This method is compared with
several methods derived from recent proposals [2, 7, 3]. The
results show that there is a trade-off between number of com-
mands and accuracy of the approximation and the new method
gives a very good compromise. Furthermore, we tried to use the
other methods in our prediction strategy (with the accent group
as intonation unit) but we did not get good results. making the
new method the only option.

Several prediction algorithms were evaluated, including

VCART (vector clustering using classification trees). This tech-
nique avoids some ill effects of independent prediction of each
model parameters. The results of the experiments show that this
method is better than building one regression tree for each pa-
rameter or using neural networks.

Many features were considered to predict the parameters of
Fujisaki’s intonation model. Afterwards, the influence of each
feature was evaluated. We conclude that a small number of fea-
tures gives most of the prediction power. The result of the anal-
ysis is in accordance to the authors experience with the model.

The predicted contours offer very good quality in our TTS
system. However, it should be noted that all the experiments
were done using a read-style corpus of declarative sentences.
Further work needs to be done to validate the use of only one
accent command for each accent group in other types of sen-
tences and other speech styles.
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