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Abstract 
A data-driven method of fundamental frequency (F0) contour 
synthesis was developed for Japanese text-to-speech (TTS) 
conversion systems.  In the method, synthesis is done using the 
F0 contour generation process model, and the model 
parameters for each accent phrase are estimated using 
statistical methods.  Although it was already shown that the 
synthesized F0 contours sounded highly natural as those using 
heuristic rules arranged by experts, occasional low quality 
happened depending on sentences to be synthesized.  In the 
current paper, information on sentence structure, automatically 
obtainable through the parsing process, is added to input 
parameters of the statistical methods to obtain a better 
estimation.  The experimental results showed that the new 
parameter was effective for improving especially phrase 
component estimation. Furthermore, data-driven estimation of 
accent phrase boundaries for input text, a necessary step to 
realize TTS conversion, was also realized in a similar way.  
The rate of correct estimation reached 90 %. 

1. Introduction 
Quality of synthetic speech from text-to-speech (TTS) 
conversion systems is largely improved through recent 
advancement in speech technology.  The improvement, 
however, is mostly on the segmental aspect of speech, and it 
rather focused low quality of prosodic features.  In view of the 
success of data-driven methods in speech processing areas, a 
rather large number of works have been done to generate 
prosodic features from linguistic inputs using statistical 
methods, such as neural networks, binary decision trees and so 
on.  When synthesis rules arranged carefully by experts are 
used, the resulting synthetic speech can have rather high 
quality, which is hard to be surpassed by statistical methods.  
This is especially true for fundamental frequency (F0) contours, 
for which several models capable of closely approximating 
natural F0 movements are already developed.  However, to 
develop synthesis rules for a new style of utterance is time 
consuming and impossible if the expert has not so much 
knowledge on the style. 

In data-driven methods for F0 contour generation, F0 
movements can be directly related to linguistic information of 
the input texts.  An HMM-based method succeeded to 
generate synthetic speech with highly natural prosodic features 
by counting F0 delta features [1].  These methods without F0 
model constraints theoretically can generate any   type of F0 
contours, but have possibility of causing un-naturalness 
especially when the training data are limited.  Several methods 
are reported under the ToBI labeling strategy.  Constraints by 
the ToBI system are beneficial in avoiding unlikely F0 contour 

being generated.  The major problem of ToBI system is that it 
is not a full quantitative description of F0 contours, which 
causes some limitations to the quality of synthesized F0 
contours.   

The F0 contour generation process model (Fujisaki model, 
henceforth F0 model) in sentence level [2] will be a good 
answer for the above problems.  It assumes two types of 
commands, phrase and accent commands, as model inputs, 
and these commands are proved to have a good 
correspondence with linguistic (and para-/non-linguistic) 
information of speech.  Advantage of the F0 model has already 
been shown in rule-based F0 contour synthesis in our work on 
Japanese TTS conversion [3], and other works on several 
major languages. From this point of view, we adopted F0 
model as constraints in the data-driven synthesis of F0 
contours and obtained good results [4].    Although current 
constraints are limited to the model's command response 
features, further constrains are possible based on various 
knowledge on model commands, such as on command timing 
as compared to the segmental boundary locations. 

The use of F0 model in a statistical approach was already 
tried in [5], where multiple split regression trees are used to 
derive rules to generate F0 model parameters.  However, the 
timing parameters are excluded from the mapping and have to 
be externally assigned.  Moreover, it uses high-level syntactic 
information as the statistical model input, which is difficult to 
be automatically obtained in a TTS system.  Our method 
estimates magnitudes/amplitudes and timings of F0 model 
commands from linguistic information automatically 
obtainable through input text analysis.  In our previously 
reported methods [4], only part-of-speech information was 
utilized as input parameters representing structure of sentence.  
In this paper, we newly added “bunsetsu” boundary depth 
automatically obtained by syntactic analysis using a Japanese 
sentence parser.   

The developed method is based on estimating F0 model 
parameters in accent phrase units.  In the current paper, we 
also estimate accent phrase boundaries for input sentences in a 
framework similar to the F0 model parameter estimation. 
In the following sections, the accent phrase boundary 
estimation and the F0 model parameter estimation are 
explained in section 4 and section 6, respectively.   

2. F0 contour generation from text 
In our method of F0 contour generation, estimation of F0 
model parameters are done for each accent phrase and a 
sentence F0 contour is generated using the F0 model after the 
estimation process is finished for all the constituting accent 
phrases.  Therefore, given a text, the following 4 processes are 
necessary before converting it into speech: morpheme analysis, 
accent phrase boundary detection, accent type estimation of 



accent phrases, and F0 model command estimation.  In 
Japanese, a content word (or words) is concatenated with its 
following function word(s) to form a "bunsetsu," whose accent 
type is usually not given in the word lexicon.   A "prosodic 
word" mostly coincides with an accent phrase.    We are 
planning to use free software for the first process, and to adopt 
a rule-based method for the third process.  This paper covers 
the second and fourth processes, where statistical methods are 
used. 

3. Statistical methods 
Three types of statistical methods were used and their 
performances were compared for the estimation of accent 
phrase boundaries and F0 model parameters; 

Neural network (NN): Besides the conventional three-
layered perceptron (MLP), Jordan (a structure having 
feedbacks from output elements), and Elman (a structure 
having feedbacks from hidden elements) networks are also 
selected to check if the feedback process may have some 
effects on the prediction accuracy.  All structures have a single 
hidden layer containing either 10 or 20 elements.  For the 
experiments, we utilized the SNNS neural network simulation 
software [6].   

Binary decision tree (BDT): This method has an advantage 
over neural network methods in that it provides human-
interpretable results, which are useful to improve the 
estimation performance.  The freeware Wagon [7] from the 
Edinburgh Speech Tools Library is used to construct the trees.  
Stop threshold, represented by the minimum number of 
examples per a leaf node, is set around 50 according to the 
result of preliminary experiments. 

Multiple linear regression analysis (MLRA): This method 
is included for the experiments also to obtain human 
interpretable results.  Correlation coefficients can be utilized 
as indices of input parameter appropriateness. 

4. Estimation of accent phrase boundaries 
The predictor examines each morpheme boundary of input text, 
and outputs a binary flag indicating whether the current 
morpheme boundary is an accent phrase boundary or not.   
First, an experiment was conducted by selecting part-of-
speech, conjugation type, and conjugation form of the 
morpheme following to the boundary in question as input 
parameters to the predictor (methods (a)).  503 sentences of 
the ATR continuous speech corpus (see section 6) were used.  
Morpheme boundaries and the input parameters used in the 
experiments were those obtainable from the corpus.   The 
sentences were divided into 3 groups and were used for 
training, testing and neural network validation process: 388 
sentences (6029 morphemes) for training, 48 sentences (543 
morphemes) for testing and 50 sentences for validation (not 
used for BDT and MLRA).   Although correct estimation rate 
was exceeded 88.5 % for all the methods, insertion errors 
were often observed for compound words as follows: 
 Correct: | ki gyo ki bo be tsu no | chi N gi N ka ku sa mo | su 

ko shi zu tsu | chi ji ma Qte |ki ta | 
 Estimation: | ki gyo | ki bo be tsu no | chi N gi N | ka ku sa mo 

| su ko shi zu tsu | chi ji ma Qte ki ta | 
Here, the sentence can be translated as "Wage differentials 
according to the size of companies have gradually decreased."  

Symbol "|" indicates accent phrase boundaries and boundaries 
before "ki bo betsuno" and "ka ku sa mo" are insertion errors.   

In order to cope with these insertion errors, features of the 
preceding morpheme to the boundary in question were also 
taken into account (methods (b)).  The input and output 
parameters are summarized in Table1.  The experimental 
results showed some insertion errors including the above two 
errors can be recovered.  The correct estimation rate exceeded 
90 % for several statistical methods as indicated in Table 2.   
 

Table 1: Input and output parameters for accent phrase 
boundary estimation and their numbers of categories 
for method (b).  For method (a), information on the 

following morpheme is excluded. 
 

Morpheme Features Categories 
Part-of-Speech of the 
Preceding Morpheme 21 
Conjugation Type of the 
Preceding Morpheme  8 

Conjugation Form of the 
Preceding Morpheme  8 

Part-of-Speech of the 
Following Morpheme 21 

Conjugation Type of the 
Following Morpheme  8 

Input 
Parameters 

Conjugation Form of the 
Following Morpheme  8 

Output 
Parameter Boundary Flag 2 (1 or 0) 

 
Table 2: Insertion and deletion error rates (%) and correct 

estimation rates (%) of accent phrase boundary 
estimation (methods (b)).  For neural networks, "-10" 
and "-20" mean the number of elements of the hidden 
layer being 10 and 20, respectively.   "-50" for binary 

decision tree means the stop threshold being 50. 
 

Closed Open Methods 
Ins. Del. Cor. Ins. Del. Cor. 

MLP-10 3.0 3.9 93.2 4.5 5.7 89.9
MLP-20 3.2 3.7 93.1 4.5 5.7 89.9
Jordan-10 3.2 3.7 93.1 4.5 5.7 89.9
Jordan-20 3.4 3.5 93.1 4.3 5.1 90.7
Elman-10 3.0 3.9 93.1 4.5 5.5 90.1

NN 

Elman-20 3.2 3.7 93.1 4.3 5.7 90.1
BDT-50 4.1 4.3 91.6 4.4 5.5 90.0
MLRA 6.3 2.5 91.6 6.3 3.9 89.9

 
We should note that the errors are not all serious for the F0 
synthesis.  For instance, the deletion error before "ki ta" even 
results in more natural F0 contours. 

5. F0 model and parametric representation of 
F0 contours  

The F0 model is a command-response model that describes F0 
contours in logarithmic scale as the superposition of phrase 
and accent components [2]. The phrase component is 
generated by a second-order, critically-damped linear filter in 



response to an impulse called phrase command, and the accent 
component is generated by another second-order, critically-
damped linear filter in response to a step function called 
accent command. The F0 model is given by the following 
equation: 
 

 
(1) 

 
 

In the equation above, Gpi(t) and Gaj(t) represent phrase and 
accent components, respectively.   F0min is the bias level, i is 
the number of phrase commands, j is the number of accent 
commands, Api is the magnitude of the ith phrase command, 
Aaj is the amplitude of the jth accent command, T0i is the time 
of the ith phrase command, T1j is the onset time of the jth 
accent command, and T2j is the reset time of the jth accent 
command.   The F0 model also makes use of other parameters 
(time constants αi and βj) to express functions Gpi and Gaj, but, 
in the current experiments, they are respectively fixed at 3.0 s-1 
and 15.0 s-1 based on the former F0 contour analysis results.  

6. Estimation of F0 model parameters 

6.1. Input and output parameters 

In our original methods for F0 model parameter estimation, 
taking the fact that the estimation of F0 model parameters is 
done in accent phrase basis, input parameters were selected 
from those related only to the accent phrase in question.  
However, they do not include direct information on how the 
accent phrase is related with other accent phrases in a 
sentence.  In the new methods, we added a code to indicate 
the depth of “bunsetsu” boundary between current and 
preceding accent phrases, which was obtainable by the 
Japanese text parser KNP for syntactic analysis [8].  Figure 1 
indicates the analysis result by the parser for the sentence 
"arayuru geNjitsuo subete jibuNno hoHe nejimagetanoda 
([He] twisted all the reality to his side.)."  In the example, 
"bunsetsu's" and accent phrases are the same, and the 
boundary depth codes are obtained by simply shifting the 
distances rightward.   We further changed par-of-speech 
categories to those obtained form the Japanese morpheme 
analysis system JUMAN [9], so that we could use JUMAN as 
the morpheme analyzer of TTS systems.    The input 
parameters of the new methods are summarized in Table 3 
with their category numbers.  The output parameters for each 
accent phrase are a set of F0 model parameters 
(magnitudes/amplitudes and timings) and a binary flag 
indicating the existence/absence of a phrase command at the 
head of the accent phrase.  There is no change form the 
original methods to the new methods.  The output parameters 
are also listed in Table 3.  In the table, T0off is the offset of T0 
with respect to the segmental beginning of the accent phrase.  
T1off and T2off are respectively offsets of T1 and T2 with respect 
to segmental anchor points, which are respectively defined as 
the beginning of the first high mora (basic unit of Japanese 
pronunciation mostly coincide with a syllable) for T1, and the 
end of the mora containing the accent nucleus for T2.  The first 
high mora of the accent phrase is either the first mora for 
accent phrases of type 1 accent, or the second mora for accent 
phrases of other accent types.  

 

 
Figure 1: Result of syntactic analysis by KNP and code 
showing boundary depth for each accent phrase boundary. 
 
Table 3: Input and output parameters for F0 model parameter 

estimation for the new methods.  “Code of boundary 
depth” is newly added. 

 
Accent Phrase Features Category 

Position of Accent Phrase in 
Sentence 18 

Number of Morae 15 
Accent Type 10 

Number of Words  7 
Part-of-Speech of the First Word 14 
Subsidiary Part-of-Speech of the 

First Word 11 

Conjugation Type of the First Word  28 
Part-of-Speech of the Last Word 14 
Subsidiary Part-of-Speech of the 

Last Word 11 

Conjugation Type of the Last Word 28 

Input 
Para-
meters 

Code of Boundary Depth  11 

Flag of Phrase Command (PF) 2 (1 or 0) 

Phrase Command Magnitude (Ap) Continuous 
Offset of T0 (T0off) Continuous 

Accent Command Amplitude (Aa) Continuous 
Offset of T1 (T1off) Continuous 

Output 
Para-
meters 

Offset of T2 (T2off) Continuous 
 

6.2. Experiments 

The prosodic corpus used for the experiments contains 503 
sentence utterances by the male speaker MHT included in 
ATR's continuous speech corpus [10].   It was divided into 
three parts in the same way as indicated in section 4: 388 
sentences (2803 accent phrases) used as training data, 48 
sentences (262 accent phrases) used as test data, and 50 
sentences used as validation data for neural networks.  The F0 
model parameters for the training data were derived from J-
ToBI labels attached to the corpus already.  First, timing 
parameters were estimated using J-ToBI labels as suggested in 
[11], and, then, the analysis-by-synthesis process was carried 
out for F0 contours extracted form the speech waveform.  The 
value of F0min was fixed to 51.0 Hz. 
The division into accent phrases, as well as the information 
related to accent types, was also derived from J-ToBI labels. 
Mora boundaries were obtained from the original phoneme 
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1a ra yu ru 2ge N ji tsu o 3su be te 4ji bu N no 5ho H e 6ne ji ma ge ta no da.
1a ra2yu ru 2ge N ji6tsu o 3su6be te 4ji5bu N no 5ho6H e 6ne ji ma-ge ta no da.
1a ra1yu ru 2ge N ji4tsu o 3su3be te 4ji1bu N no 5ho1H e 6ne ji ma-ge ta no da.

a ra yu ru / ge N ji tsu o / su be te / ji bu N no / ho H e / ne ji ma ge ta no da.
1aFra yu ru2g1eN ji tsu o3s4ube te4j3ibu N no5h1oH e6n1eji ma ge ta no da.

“bunsetsu”:

modified “bunsetsu”:

distance:

accent phrase:

code of boundary depth:

1a ra yu ru 2ge N ji tsu o 3su be te 4ji bu N no 5ho H e 6ne ji ma ge ta no da.
1a ra2yu ru 2ge N ji6tsu o 3su6be te 4ji5bu N no 5ho6H e 6ne ji ma-ge ta no da.
1a ra1yu ru 2ge N ji4tsu o 3su3be te 4ji1bu N no 5ho1H e 6ne ji ma-ge ta no da.

a ra yu ru / ge N ji tsu o / su be te / ji bu N no / ho H e / ne ji ma ge ta no da.
1aFra yu ru2g1eN ji tsu o3s4ube te4j3ibu N no5h1oH e6n1eji ma ge ta no da.

“bunsetsu”:

modified “bunsetsu”:

distance:

accent phrase:

code of boundary depth:



boundaries using simple rules.  In the current experiments, 
division into accent phrases, as well as the information related 
to accent types were also derived from the J-ToBI labels.  

The results are summarized in Table 4, where mean square 
errors (MSE's) on logarithmic scale between synthesized F0 
contours using the estimated model parameters and observed 
F0 contours are listed as indices of estimation performance.  
When synthesizing F0 contours, information on segmental 
timing and voiced/unvoiced of the target speech is utilized as it 
is. The MSE values in the table are those averaged over all the 
test sentences.  The table also contains the MSE when 
command values estimated form the J-ToBI labels are used 
(target F0 contours).   Clearly better results were obtained by 
the new methods.  Table 5 shows the multiple correlation 
coefficients for MLRA.  Although the improvements are 
observable for all the output parameters from the original to the 
new methods, they are significant for those of phrase 
components.  This result is quite natural, since the syntactic 
structure of a sentence mostly related to the phrasing. 
 

Table 4: Average mean square errors (MSE's) for 48 test 
sentences between F0 contours generated using 
estimated F0 parameter values and observed F0 

contours.  MSE is calculated as mean square distance 
(per a frame) between synthesized F0 contour and that 

of natural utterance.   
 

Methods MSE 

Target 0.127 
MLP-10 0.218 
MLP-20 0.217 

Jordan-10 0.220 
Jordan-20 0.215 
Elman-10 0.214 

NN 
(Original Methods) 

Elman-20 0.232 
Original 0.226 

BDT-30 
New 0.197 

Original 0.228 
BDT-50 

New 0.201 
Original 0.226 BDT-70 

New 0.198 
Original 0.223 MLRA 

New 0.198 
 
 
Table 5: Multiple correlation coefficients of the training data 

for multiple linear regression analysis.  
 

Output Parameters Original New 
PF 0.602 0.685 
Ap 0.642 0.729 

T0off 0.590 0.641 
Aa 0.441 0.465 

T1off 0.440 0.442 
T2off 0.428 0.438 

 

7. Conclusion 
Data-driven F0 contour synthesis scheme under the F0 model 
constraints was developed. As for the prediction modules, 
neural networks, and modules based on binary decision tree 
and multiple linear regression analysis were tested.  A code to 
indicate the depth of boundary between current and preceding 
accent phrases was added to the input parameters of predictors.  
Through experiment it was shown the addition improved the 
estimation performance especially for phrase components.  We 
also applied the statistical methods to the accent phrase 
boundary estimation from the input text successfully. 

One of the problems of the current scheme is that the 
prosodic features of the neighboring phrases are not taken into 
account for the estimation of F0 model parameters of the 
current  accent phrase.  We are now planning to incorporate 
information of preceding and following accent phrases in the 
process. Also evaluation experiments for the speech obtained 
by TTS conversion process is planned. 
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