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Abstract

Duration model is a standard part of current speech synthesiz-
ers. Many types of models have been used recently, e.g. multi-
plicative models ([8]), sum-of-products models ([9]) or decision
tree-based models ([4],[5]). This paper follows a decision tree
approach. It describes several versions of the duration model
for Czech speech synthesis. The model presented here will be
implemented in the Czech TTS system Demosthenes ([1],[2]).

1. Introduction

Almost all contemporary text-to-speech synthesizers include a
prosody modeling module. Traditionally, at least three prosody
components are modeled: segment durations, intonation and in-
tensity. This paper deals with the duration modeling module.

We will use the following notation in the rest of the paper.
Speech segment f is represented by an n-dimensional feature
vector:

f:(f17f27"'7fn)

d(f) will denote the real duration of the segment f and d(f)
duration computed by a predictor. The task of duration model-
ing is to predict values d(f) as close as possible to values d(f).
Let us now briefly summarize the approaches used to model
segment durations.

Multiplicative model. This model supposes that the seg-
ment duration of the particular segment can be computed as:

d(f) = Fi(f1) x Fa(f2) X -+ x Fu(fn),

where F represents the intrinsic duration of the segment
and F», ..., F, represent the effects of other factors.

Sume-of-products model. This model was introduced
in [9]. It is a generalization of the multiplicative model (and
some other models). According to this model, segment dura-
tion is expressed as:

d(f) =TI Sus(£i),

i€l jel;

where S; ; is the function representing the influence of
factors ¢,5. In the multiplicative model, |T'| = land , =
{1,2,...,n}.

CART-based model. A CART-based modeling succes-
sively divides the feature space to minimize the prediction er-
ror. Finally, it constructs a tree representing the partition of the
feature space. The CART technique is discussed in more detail
in the next section.

Accuracies of several recent duration models are presented
in table 1.

2. CART-based Approach

Classfication and regression trees (CART) are a statistical mod-
eling technique used to predict a value of a variable y using the
corresponding feature vector f. The prediction process may be
illustrated on an example.

Suppose, we have a speech segment f described by the fol-

lowing feature vector (for the description of features see below):
f = (phid=t_S,previd=i,nextid=e, ... ,wordpos=m)
We want to predict the duration of this segment using the tree
from figure 5. First, we ask the question in the root node: Is f
long vowel? As f is not a long vowel, we continue asking the
question in the right descendant of the root node: Is f unvoiced
plosive, fricative or affricate? We continue asking questions
until a terminal node is reached. A value in the terminal node is
the predicted duration (107.7 ms for our sample segment).

The tree construction consists of three steps: building a
tree, pruning subtrees and selecting an optimal tree. To build
a tree we need a training (or learning) set L in the form
{(f",y™);n =1,2,...,N}, where f™ are feature vectors of
corresponding objects and y™ values of the dependent variable.
We start with the tree consisting only of a root node ¢; contain-
ing all of the cases in L. The task now is to find the optimal
binary split of the data. For real-valued feature i all splits of the
form f* < 7 are tested. For the M-valued categorical feature i,
splits have the form f; € ©, where © goes through all subsets
of the set of all possible values of the feature 7. The best split
across all features is selected and the data in the root node is
splitted and sent into nodes ¢.,tr. This procedure is applied
recursively to all descendants until a stopping condition is ful-
filled. Root mean square error is used as a splitting criterion:

D () =)’ + Y (d(f) — )

fetr fetr

After the tree construction phase, we have a relatively large
tree Trna. We successively prune some branches and construct
atree sequence Tyge 2 --- 2 T D --- D Tk = t1. Among
these trees we select the best tree using a test sample indepen-
dent on a training sample.

The CART-based approach has several advantages. Let us
mention at least the simplicity of interpretation of the final clas-
sifier and the possibility of combination of categorical and real-
valued features. For more detailed description of CART the
reader may consult [3].

3. Description of the Database

We collected a set of short articles selected from Czech news-
papers. A native male speaker read isolated sentences. The
database consists of 56 sentences and 5081 phones.



Author Language Model Type Correl. coeff. | RMSE (ms)
Shih Chinese multiplicative — 25
van Santen | Am. English | sum-of-products 0.9 —
Lee Korean CART 0.82 22
Chung Korean CART 0.73 26

Table 1: A comparison of several duration modeling components.

Utterances were segmented manually using the Praat pro-
gram enabling to display the speech wave, spectrogram and
other acoustic characteristics. Phone, syllable, word and phrase
boundaries were labelled. Phrase boundaries corresponded to
pauses in the waveform. Syllable boundaries were labelled by
only one annotator. The exact syllable boundary placement de-
pended only on his subjective opinion.

The data was divided at random into training set (70% —
3,563 segments) and test set (30% — 1,518 segments).

We used a phoneme system with 10 vowels (5 short vowels
and 5 corresponding long vowels) and 25 consonants. Pause
was marked by an extra symbol. We use the SAMPA alphabet
(see [6]) to describe the phoneme identities in this paper.

4. Basdine Moded

Based on the literature (see e.g. [4].[5].[8].[9]) and some infor-
mal observations the following features were used in the first
experiment:

e phid — the identity of the current phoneme. This feature
is categorical and it has 35 possible values. During the
tree construction phase, all subsets of the set of all values
should be investigated. This is computationally infeasi-
ble for such a large set and we decided to use another
solution. Based on the phonetic knowledge, we manu-
ally defined subsets to be investigated. Another possible
solution is given in [5], but it has not been tested.

e previd, nextid — the identity of the preceding and fol-
lowing phoneme. The symbol / stands for pause where
neccessary. The same approach was used for defining
subsets to be investigated. A set of subsets of the previd
feature slightly differs from the set of subsets of the
nextid feature.

e o, wl, pl — syllable, word and phrase length in
phones. Ordered numerical features with levels 1-6,
1-20, 1-150. Although it is theoretically possible to
have longer words or phrases in Czech, they did not ap-
pear in our database.

e sph, spe — phone position in syllable from the begin-
ning (end) in phones. Ordered numerical feature with
levels 0-6.

e wpb, wpe— phone position in word from the beginning
(end) in phones. Ordered numerical feature with levels
0-20.

e wordpos — word position in a prosodic phrase. Cat-
egorical feature with levels {phrase-initial, phrase-
middle, phrase-final}. All subsets of this set are inves-
tigated, although the subset {phrase-initial, phrase-final}
probably does not make sense.

The regression tree was grown and then pruned back using
the OSE rule (see [3]). The results are shown in table 5, row 1.

The model is comparable with other CART-based models. Nev-
ertheless, the average error is still quite large. In the rest of the
paper we will try to find the ways how to improve it.

5. Feature Revision

When we look at the data in a more detail, we can see that the
effects of some features do not correspond to our intuitive ex-
pectations. Let us look at figure 5, which shows the average
durations of segments depending on the word length. The de-
creasing trend is obvious, which means that in general phones
in long words are shorter than phones in short words. However,
this assertion does not hold consistently. For instance, phones
in words consisting of 6 phonemes are in average longer than
phones in words consisting of 3 phonemes and so on. The same
pattern appears at features spb, spe (fig. 5), wpb and wpe.
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Figure 1: Average durations of phonemes depending on the
word length in phones
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Figure 2: Average durations of phonemes depending on the
within-syllable position from the end of the syllable

In fact, although these features are defined as ordered, their
ordering does not match the influence on segmental duration.
We may provide two solutions how to overcome this drawback.

1. A feature is no longer handled as ordered, but as cat-
egorical with the set of possible values {1,2,...,M}.
We may either go through all the subsets of this set,



or we can sort the set according to the influence of
each factor value on segmental duration and ask only
M — 1 questions. For instance, for the feature spe we
would ask whether spe € {0}, spe € {0,4},spe €
{0,4, 3}, spe € {0,4, 3,2} or spe € {0,4,3,2,1}.

2. Wewill analyse the dataand find the feature anal ogous to
the original feature with the monotonous influence on the
segmental duration. The feature word length in syllables
(instead of word length in phones) is an example of such
feature (see figure 5).
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Figure 3: Average durations of phonemes depending on the
word length in syllables

All features used in the first experiment were analysed and
their influence on the segmental duration investigated. The sec-
ond experiment was run with the following features:

e phid, previd, nextid, d, pl, wordpos— The same asin
the previous experiment.

e ws — Word length in syllables. Ordered numerical fea-
ture with levels 0-10.

e wpsb — Syllable position in word from the beginning.
Categorical feature with values {word-initial syllable,
not word-initial syllable}.

e wpse — Syllable position in word from the end. Cat-
egorical feature with values {word-final syllable, not
word-final syllable}.

e ppsb — Syllable position in the phrase from the begin-
ning. Categorical feature with values { phrase-initial syl-
lable, phrase second syllable, other syllable}.

e ppse — Syllable position in the phrase from the end.
Categorical feature with values {phrase-fina syllable,
phrase penultimate syllable, other syllable}.

e sp — Phoneme position in the syllable. Categorical fea-
ture with values {syllable onset, syllable nucleus, syl-
lable coda}. This feature makes sense only for conso-
nants. Although most of them appear in onsets and co-
das, Czech consonantsr, | or mmay be also syllabic and
thus form a syllable nucleus.

Row 2 of table 5 shows the results of the second experi-
ment. The accuracy is dlightly higher. What is probably the
most suprising is the size of the fina tree. With only 13 (!)
terminal nodes (i.e. 12 questions) we are able to predict the
segment duration with very high precision.

The tree is presented in the figure 5. In each non-terminal
node a splitting question and the average duration of the seg-
ment is presented. The average duration and root mean square
error are depicted in each terminal node.

Model Treesize | Corrdl. coeff. | RMSE (ms)
Baseline 85 0.77 22.1
Revised Features 13 0.79 211
Combined — 0.79 20.3

Table 2: RMSEs and correlation coefficients of various versions
of CART-based duration model of Czech speech.

6. Phoneme Class-Specific Models

Figure 6 show the influence of the wsl feature on the short vow-
els. Short vowels in unisyllabic words are shorter than in bisyl-
labic. Onthe other side, whiletheinfluence of the spefeature on
all phonemes cannot be easily interpreted, itsinfluence on short
vowels is clear (see fig. 6). These effects lead us to building a
separate tree classifiers for various phoneme classes.

The data were divided into three classes. vowels, sonorant
consonants and other consonants. The lack of datadidn’t allow
us to make more subtle partition. For each class, class-specific
features were derived. The tree was built for each class sepa-
rately.
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Figure 5: Average durations of short vowels depending on the
word length in syllables
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Figure 6: Average durations of short vowels depending on the
within-syllable position from the end of the syllable

The third row of table 5 shows the accuracy of the model
combining class specific models. Phoneme class-specific model
improves error rate, correlation coefficient remains roughly the
same.

7. Future Research

Itisclear that root mean square error is not the optimal measure
of aduration model accuracy. Predicting 20 msinstead of 60 ms
is much more serious mistake than predicting 200 ms instead
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Figure 4: Regression tree for predicting segmental duration.

of 240 ms. It sounds reasonable that the error measure should
depend also on the absolute values of both predicted and real
durations. Therefore, the error function should be of the form:

S feld(F), d()

feL

Closer inspection of the data shows that a lot of serious errors
in prediction appear next to the glottal stop. Glottal stop has not
been labelled and its duration is added to the duration of one of
its neighbors. Labelling glottal stops would probably improve
the accuracy of the model.

Other observations show that the large number of errors
occur in words with high prominence. Some researchers (see
e.g. [7]) report that prominence (both syllable and word promi-
nence) can be used as an important factor influencing not only
duration, but other prosodic attributes as well. Thus, promi-
nence is another candidade for the further investigation.

8. Conclusions

A duration model for Czech text-to-speech synthesis was pre-
sented in the papers. It is based on the CART modeling tech-
nique. Several versions of the model have been presented. The
best solution combines regression trees built separately for three
different phoneme classes — vowels, sonorant consonants and
other consonants. The correlation coefficient of the best model
was 0.79 and RM SE 20.3 milliseconds. The model will be ap-
plied in the Czech speech synthesizer Demosthenes.
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